scholarly journals Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Juliana Branco Novo ◽  
Ligia Morganti ◽  
Ana Maria Moro ◽  
Adriana Franco Paes Leme ◽  
Solange Maria de Toledo Serrano ◽  
...  

Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher’s patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.

1990 ◽  
Vol 10 (4) ◽  
pp. 1338-1346
Author(s):  
C Ma ◽  
T H Leu ◽  
J L Hamlin

We recently showed that replication initiates in the early S period at two closely spaced zones in the 240-kilobase (kb) dihydrofolate reductase (DHFR) amplicon of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Both of these initiation loci (ori-beta and ori-gamma) have previously been cloned in a recombinant cosmid. In this study, we identified a third early-firing initiation locus (ori-alpha) in the much larger DHFR amplicon of the independently isolated methotrexate-resistant Chinese hamster cell line DC3F-A3/4K (A3/4K). We describe the molecular cloning of this newly identified locus and demonstrate by chromosomal walking that ori-alpha lies approximately 240 kb upstream from ori-beta. Using overlapping cosmid clones for more than 450 kb of DNA sequence from this region of the DHFR domain, we have monitored the replication pattern of the amplicons in synchronized A3/4K cells. These studies suggest that ori-alpha, ori-beta, and ori-gamma are the only early-firing initiation sites in this 450-kb sequence. In addition, we have been able to roughly localize the termini between ori-alpha and ori-beta and between ori-alpha and the next origin in the 5' direction. Thus, we have now isolated the equivalent of three early-firing replicons (including their origins) from a well-characterized chromosomal domain. With these tools, it should be possible to determine those properties that are shared by the origins and termini of different replicons and which are therefore likely to be functionally significant.


Author(s):  
Jeffrey T. Mcgrew ◽  
Cheryl L. Richards ◽  
Pauline Smidt ◽  
Bradley Dell ◽  
Virginia Price

1991 ◽  
Vol 146 (3) ◽  
pp. 417-424 ◽  
Author(s):  
Bianca Maria Rotoli ◽  
Ovidio Bussolati ◽  
Valeria Dall'asta ◽  
Gian Carlo Gazzola

Sign in / Sign up

Export Citation Format

Share Document