scholarly journals An Integrated Model for Production Planning and Cell Formation in Cellular Manufacturing Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reza Raminfar ◽  
Norzima Zulkifli ◽  
Mohammadreza Vasili ◽  
Tang Sai Hong

Cellular manufacturing (CM) is a production approach directed towards reducing costs, as well as increasing system's flexibility in today's small-to-medium lot production environment. Many structural and operational issues should be considered for a successful CM design and implementation such as cell formation (CF), production planning, and facility layout. Most researchers have addressed these issues sequentially or independently, instead of jointly optimizing a combination of these issues. In order to attain better results to ensure that the system will be capable of remaining efficient in unknown future situations, these issues should be addressed simultaneously. In this paper, a mathematical model is developed using an integrated approach for production planning and cell formation problems in a CM. A set of numerical examples are provided from existing the literature in order to test and illustrate the proposed model. In order to evaluate and verify the performance of the proposed model, it is compared with a well-known cell formation methods (rank order clustering and direct clustering analysis), using group capability index (GCI) measure. The results and comparisons indicate that the proposed model has a significantly higher and satisfactory performance and it is reliable for the design and the analysis of CM systems.

2012 ◽  
Vol 557-559 ◽  
pp. 2423-2426 ◽  
Author(s):  
Reza Raminfar ◽  
Zulkifli Norzima ◽  
Mohammadreza Vasili ◽  
Sai Hong Tang

Cellular manufacturing (CM) is a production approach directed towards reducing costs, as well as increasing system's flexibility in today's small-to-medium lot production environment. Many structural and operational issues should be considered for a successful CM design and implementation; such as cell formation (CF), production planning, group layout (GL), resource allocation and scheduling. Most researchers have addressed these issues sequentially or independently, instead of jointly optimizing a combination of these issues. In order to attain better results to ensure that the system will be capable of remaining efficient in unknown future situations, these issues should be addressed simultaneously. In this paper possibility of developing a comprehensive mathematical model which considers these issues is discussed.


2013 ◽  
Vol 51 (20) ◽  
pp. 6017-6044 ◽  
Author(s):  
Babak Javadi ◽  
Fariborz Jolai ◽  
Jannes Slomp ◽  
Masoud Rabbani ◽  
Reza Tavakkoli-Moghaddam

2016 ◽  
Vol 854 ◽  
pp. 121-126 ◽  
Author(s):  
M. Shunmuga Sundaram ◽  
V. Anbumalar ◽  
P. Anand ◽  
B. Aswinkumar

A Combined Algorithm is proposed to form the machine cell and part family identification in the cellular manufacturing system. In the first phase, part families identification, by using Rank Order Clustering (ROC) and Modified Single Linkage Clustering (MOD-SLC). In second phase, Machine cell formation, by using Rank Order Clustering (ROC) and Modified Single Linkage Clustering (MOD-SLC), which is to assign machines into machine cells to produce part families. The above Proposed method is tested by using standard problems and compared with other method results for the same standard problems. Grouping efficiency is one of the most widely used measures of quality for Cellular Manufacturing Systems.


Author(s):  
Amin Rezaeipanah ◽  
Musa Mojarad

This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and inter-cell movements simultaneously, while considering sequence-dependent cell setup times. In the CMS design and planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-cell layouts, and scheduling issue. Due to the fact that the Cellular Manufacturing Systems (CMS) problem is NP-Hard, a Genetic Algorithm (GA) as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are solved to show the efficiency of the proposed GA and the related computational results are compared with the results obtained by the use of an optimization tool.


Sign in / Sign up

Export Citation Format

Share Document