part families
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 1)

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 148
Author(s):  
Yongquan Wang ◽  
Guangpeng Zhang ◽  
Jiali Wang ◽  
Pan Liu ◽  
Nina Wang

The reconfigurable manufacturing system (RMS) is a new manufacturing technology and paradigm that resolves the contradictions regarding high efficiency, low cost and flexible production in the mass production of part families. Reconfigurable machine tools (RMTs) are the core components of RMSs. A new approach is proposed for the design of RMTs, which is closely related to the process planning of a given box-type part family. The concepts of the processing unit and the processing segment are presented; they are not only the basic elements of the processing plans of machined parts, but also closely related to the structural design of RMTs. Processing units created by processing features can be combined into various processing segments. All the processing units of one processing segment correspond to the machining operations performed by one RMT. By arranging the processing segments according to the processing sequence, a variety of feasible processing plans for a part can be obtained. Through analysis of the established similarity calculation model for processing plans, the most similar processing plans for the parts in a given part family can be determined and used for the structural design of RMTs. Therefore, the designed RMTs can achieve rapid conversion of processing functions with the least module replacement or adjustment to realize the production of the parts in the part family. Taking the production of a gearbox part family as an example, the validity of the presented method is verified.


2021 ◽  
Vol 11 (15) ◽  
pp. 6940
Author(s):  
Vladimir Modrak ◽  
Ranjitharamasamy Sudhakara Pandian ◽  
Pavol Semanco

In manufacturing-cell-formation research, a major concern is to make groups of machines into machine cells and parts into part families. Extensive work has been carried out in this area using various models and techniques. Regarding these ideas, in this paper, experiments with varying parameters of the popular metaheuristic algorithm known as the genetic algorithm have been carried out with a bi-criteria objective function: the minimization of intercell moves and cell load variation. The probability of crossover (A), probability of mutation (B), and balance weight factor (C) are considered parameters for this study. The data sets used in this paper are taken from benchmarked literature in this field. The results are promising regarding determining the optimal combination of the genetic parameters for the machine-cell-formation problems considered in this study.


2021 ◽  
Vol 343 ◽  
pp. 03002
Author(s):  
Livia Dana Beju

The paper presents a methodology for the design of the manufacturing cells, covering all the necessary steps, from the analysis of the customers’ needs, to part families for group technologies, process engineering, control procedures, production rate, production planning (push or pull workflow), supply in the manufacturing cell, workcell configuration, work standardisation. The necessary tools through each stage are presented. Also, there are presented links to major company systems. For each design stage, deliverables are specified. this design approach is not linear. At each stage it is possible (and indicated) to go back and analyse the previously established parameters. The methodology is a complex one, and in a wider space the detailed parameters will be presented in extenso.


2019 ◽  
Vol 18 (5) ◽  
pp. 991-1014
Author(s):  
Vennan Sibanda ◽  
Khumbulani Mpofu ◽  
John Trimble ◽  
Mufaro Kanganga

Purpose Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind these machines is the part envelope and the part family of products that they can produce. The purpose of this paper is to propose a new class of RMT known as a reconfigurable guillotine shear and bending press machine (RGS&BPM). A part family of products that this machine can produce is developed using hierarchical clustering methodologies. The development of these part families is guided by the relationship of the parts in the family in terms of complexity and geometry. Design/methodology/approach Part families cannot be developed in isolation, but that process has to incorporate the machine modules used in the reconfiguration process for producing the parts. Literature was reviewed, and group technology principles explored, to develop a concept that can be used to develop the part families. Matrices were manipulated to generate part families, and this resulted in the development of a dendrogram of six possible part families. A software with a graphic user interface for manipulation was also developed to help generate part families and machine modules. The developed concept will assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. Findings The developed concepts assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. The development of part families for the RGS&BPM is key to developing the machine work envelope and modules to carry out the work. This work has been presented to demonstrate the importance of machine development in conjunction with a part family of products that the machine will produce. The paper develops an approach to manufacturing where part families of products are developed prior to developing the machine. The families of products are then used to develop modules that enable the manufacture of the parts and subsequently the size of the machine. Research limitations/implications The research was limited to the development of part families for a new RGS&BPM, which is still under development. Practical implications The study reflects the development of reconfigurable machines as a solution to manufacturing challenges in terms of group technology approaches adopted in the design phase. It also highlights the significance of the concepts in the reconfigurable machine tool design. The part families define the machine work envelop and its reconfiguration capability. Social implications The success of the research will usher an alternative to smaller players in sheet metal work. It will contribute to the easy development of the machine that will bridge the high cost of machine tools. Originality/value The study contributes to the new approach in sheet metal manufacturing where dedicated machines may be substituted by a highly flexible reconfigurable machine that has a dual operation, making the investment for small to medium enterprises affordable. It also contributes to the body of knowledge in reconfigurable machine development and the framework for such activities, especially in developing countries.


Cell formation is to construct machine cells and part families and then dispatch the part families to machine cells. Various cell formation approaches and algorithms have been developed over the years considering various production factors, scenarios and objectives. The results of these different approaches are evaluated based on the several parameters. Most of the studies have considered only either the operation sequence or the alternative routing. Very few of the approaches have proposed for considering both the operation sequence and the alternative routing. Here, a new method for the formation of cell and intracellular machine arrangement which is formulated by considering both the operation sequence and alternative process routings is proposed. The arrangement of machines and parts within the cell follows a specific sequence which is formed with the help of coefficient of similarity. Various parameters such as forward flow, backflow and voids in the cell formation scenarios are considered to evaluate the approach. With the help of these parameters problems from other literatures, which were solved by other methods are evaluated. So as to validate the effectiveness of our proposed approach, five eminent test problems from the previous literature are engaged and the results are compared with the existing method the results clearly display that the proposed approach which that provides superior or equal solution than the existing method.


Cell formation is to construct machine cells and part families and then dispatch the part families to machine cells. Various cell formation approaches and algorithms have been developed over the years considering various production factors, scenarios and objectives. The results of these different approaches are evaluated based on the several parameters. Most of the studies have considered only either the operation sequence or the alternative routing. Very few of the approaches have proposed for considering both the operation sequence and the alternative routing. Here, a new method for the formation of cell and intracellular machine arrangement which is formulated by considering both the operation sequence and alternative process routings is proposed. The arrangement of machines and parts within the cell follows a specific sequence which is formed with the help of coefficient of similarity. Various parameters such as forward flow, backflow and voids in the cell formation scenarios are considered to evaluate the approach. With the help of these parameters problems from other literatures, which were solved by other methods are evaluated. So as to validate the effectiveness of our proposed approach, five eminent test problems from the previous literature are engaged and the results are compared with the existing method the results clearly display that the proposed approach which that provides superior or equal solution than the existing method.


Sign in / Sign up

Export Citation Format

Share Document