scholarly journals Hepatic Iron Quantification on 3 Tesla (3 T) Magnetic Resonance (MR): Technical Challenges and Solutions

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Anwar ◽  
John Wood ◽  
Deepa Manwani ◽  
Benjamin Taragin ◽  
Suzette O. Oyeku ◽  
...  

MR has become a reliable and noninvasive method of hepatic iron quantification. Currently, most of the hepatic iron quantification is performed on 1.5 T MR, and the biopsy measurements have been paired withR2andR2*values for 1.5 T MR. As the use of 3 T MR scanners is steadily increasing in clinical practice, it has become important to evaluate the practicality of calculating iron burden at 3 T MR. Hepatic iron quantification on 3 T MR requires a better understanding of the process and more stringent technical considerations. The purpose of this work is to focus on the technical challenges in establishing a relationship betweenT2*values at 1.5 T MR and 3 T MR for hepatic iron concentration (HIC) and to develop an appropriately optimized MR protocol for the evaluation ofT2*values in the liver at 3 T magnetic field strength. We studied 22 sickle cell patients using multiecho fast gradient-echo sequence (MFGRE) 3 T MR and compared the results with serum ferritin and liver biopsy results. Our study showed that the quantification of hepatic iron on 3 T MRI in sickle cell disease patients correlates well with clinical blood test results and biopsy results. 3 T MR liver iron quantification based on MFGRE can be used for hepatic iron quantification in transfused patients.

Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 447-456 ◽  
Author(s):  
John Porter ◽  
Maciej Garbowski

Abstract The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1646-1646 ◽  
Author(s):  
Ersi Voskaridou ◽  
Maria Schina ◽  
Eleni Plata ◽  
Dimitrios Christoulas ◽  
Maria Tsalkani ◽  
...  

Abstract Abstract 1646 Liver transient elastography (FibroScan) is an interesting new technology that allows estimation of hepatic fibrosis through measurement of liver stiffness. The technique is based on changes in tissue elasticity induced by hepatic fibrosis and is considered as a noninvasive, reproducible and reliable method to assess hepatic fibrosis as well as to diagnose liver cirrhosis. Hepatic iron overload is a severe complication of chronic transfusion therapy in patients with hemoglobinopathies and plays an important role in the development of hepatic fibrosis and cirrhosis. Iron overload is present in several cases of sickle cell disease (SCD) including sickle cell anemia (HbS/HbS) and double heterozygous sickle-cell/beta-thalassemia (HbS/beta-thal). The aim of the study was to evaluate liver fibrosis by measuring the liver rigidity (Liver Stiffness Measurement, LSM, kPascals) using transient elastography (FibroScan, Echosens, Paris, France) in patients with SCD and explore possible correlations with clinical and laboratory characteristics of the patients, including iron overload. We studied 110 consecutive patients with SCD who are followed-up in the Thalassemia Center of Laikon General Hospital in Athens, Greece. Forty-four patients were males and 66 females; their median age was 44 years (range: 21–73 years). Twenty-two patients had HbS/HbS and 88 patients had HbS/beta-thal. On the day of Fibroscan, all patients had a thorough hematology and biochemical evaluation, including hemoglobin, reticulocyte counts, serum ferritin, liver biochemistry, bilirubin, lactate dehydrogenase (LDH) and serology for viral hepatitis. Liver iron concentration was evaluated by magnetic resonance imaging (MRI) T2* in all patients. The median LSM of all patients was 6.1 kPascals (range: 3.4–48.8 kPascals) with no differences between HbS/HbS (6.1 kPascals, 3.5–17.3 kPascals) and HbS/beta-thal (6.1 kPascals, 3.4–48.8 kPascals) patients (p=0.835). LSM values strongly correlated with liver MRI T2* values (r=0.337, p<0.001), serum ferritin (r=0.328, p=0.001), number of transfusions (r=0.332, p=0.001), bilirubin (r=0.299, p=0.003), LDH (r=0.287, p=0.004), Hb (r=-0.275, p=0.006) and reticulocyte counts (r=0.244, p=0.015). LSM values showed also strong positive correlations with biochemical indicators of liver function: gamma-glutamyl transpeptidase (r=0.522, p<0.0001), glutamic oxaloacetic transaminase (r=0.484, p<0.0001), glutamic pyruvic transaminase (r=0.422, p<0.0001), alkaline phosphatase (r=0.334, p=0.001), gamma-globulin (r=0.296, p=0.005) and weak correlation with PT-International Normalized Ratio (r=0.184, p=0.094). The above correlations were similar in patients with HbS/HbS and in patients with HbS/beta-thal. However, in HbS/HbS patients the correlation between LSM and liver T2* values was very strong (r=0.770, p=0.001). Patients who were regularly transfused had higher values of LSM (median: 6.7 kPascals, range: 2.3–48.8 kPascals) compared with patients who were sporadically transfused or were not transfused (4.4 kPascals, 3.6–17.5 kPascals, p=0.003). Patients who were under iron chelation therapy had lower values of LSM (6.3 kPascals, 3.4–15 kPascals) compared with those who did not receive iron chelators (13.9 kPascals, 8.5–17.3 kPascals, p=0.013). We found no correlations between the presence of HBV or HCV positivity and the levels of LSM. In conclusion, FibroScan may constitute a reliable and easy to apply noninvasive method to assess liver fibrosis in patients with SCD; the strong correlations between LSM values with MRI T2* values and serum ferritin supports this observation. Furthermore, FibroScan seems also to reflect the presence of chronic hepatic injury in these patients. If our results are confirmed by other studies, FibroScan may be regularly used in the management of SCD patients in whom liver is the main target organ of the disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3789-3789 ◽  
Author(s):  
Zahra Pakbaz ◽  
Roland Fischer ◽  
Richard Gamino ◽  
Ellen B. Fung ◽  
Paul Harmatz ◽  
...  

Abstract Introduction: Monitoring iron overload by serum ferritin in patients with hemosiderosis is still a routine practice although its limitations are widely studied and well known. Using non-invasive liver iron assessment by quantitative MRI or by biomagnetic liver susceptometry (BLS) with SQUID biomagnetometers would be the better alternative, however, these methods are available at only a few centers worldwide. Objective: To determine the relationship between serum ferritin (SF) and liver iron concentration (LIC), measured by BLS at CHRCO, in patients with different types of hemosiderosis. Methods and Patients: A total of 97 patients with thalassemia (TM: 3 to 52 y, 54% females) and 39 patients with sickle cell disease (SCD: 5 to 49 y, 60% female) were prospectively assessed for LIC and SF. Both tests were performed within 2 weeks of each other. Most patients with TM and SCD were chronically transfused, while 10 b-thalassemia intermedia (TI), 5 HbE/β-thalassemia (HbE), and 5 SCD patients were not on transfusion programs. LIC was measured by LTc SQUID biosusceptometer system (Ferritometer®, Model 5700, Tristan Technologies, San Diego, USA) under the standardized Hamburg-Torino-Oakland protocol. A non-parametric test (U-test) was utilized to analyze differences between SF and LIC data. Results: In chronically transfused TM and SCD patients, the median SF and LIC were very similar (Table I). In TI&HbE patients, ferritin results were disproportionately low with respect to LIC. In order to improve prediction of iron stores by SF, the SF/LIC ratio was calculated. There was a significant difference between the median ratios of the two groups of transfused and non- transfused thalassemia patients, 0.82 vs. 0.32 [μg/l]/[μg/gliver], respectively (p < 0.01). In SCD patients the ratio is significantly (p < 0.01) higher. Conclusion: Present data confirm ferritin to be a poor predictor of liver iron stores both in sickle cell disease and thalassemia. Relying only on ferritin to monitor iron overload in patients with hemosiderosis can be misleading, especially, in sickle cell disease and non-transfused thalassemia patients. Taking into account disease specific ferritin-LIC relations, could improve the prediction of iron stores. However, assessment of liver iron stores is the ultimate method to initiate and adjust chelation treatment in order to avoid progressive organ injury. Table I. Median values and ranges ( − ) of serum ferritin (SF) and liver iron concentration (LIC) in transfused (Tx) and non-transfused (non-Tx) hemosiderosis patients. Patient group n SF μg/l] LIC [mg/gliver ] SF:LIC Thalassemia Tx 82 1721 (209–8867) 3424 (364–7570) 0.82 (0.3–1.8) TI &HbE non-Tx 15 766 (52–2681) 2174 (226–5498) 0.32 (0.1–1.4) SCD Tx 34 2757 (400–9138) 1941 (518–6670) 1.2 (0.6–3.3)


2016 ◽  
Vol 38 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Scott N. Myers ◽  
Ryan Eid ◽  
John Myers ◽  
Salvatore Bertolone ◽  
Arun Panigrahi ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3721-3721
Author(s):  
Ellen B. Fung ◽  
Filomena Longo ◽  
Roland Fischer ◽  
Rainer Engelhardt ◽  
Zahra Pakbaz ◽  
...  

Abstract Assessing iron chelator efficacy in clinical trials requires standardization of liver iron concentration measurements. In a blinded round-robin test, liver iron concentration (LIC) was measured within 1 month in 18 patients with thalassemia or sickle cell disease and in 10 normal subjects at the 3 SQUID biosusceptometer systems located in Hamburg (UKE), Torino (TOR), and Oakland (CHO). Mean LIC values (range: normal up to 8000 μg/g-liver) were determined from 5 separate vertical scans. The observed intrasite precision (SD of Altman-Bland differences from duplicate measurements with repositioning) was found in the expected range of ±130 (UKE), ±200 (TOR), and 220 μg/g-liver (with 3 operators involved at CHO). Prediction of LIC at TOR and CHO in comparison with UKE was very good, with coefficients of determination between sites of R2 = 0.97, resulting in intersite standard deviations (SD) of 247 and 326 μg/g-liver, respectively. Differences of 24, 20, and 5% were noted for the comparisons UKE-TOR, CHO-TOR, and UKE-CHO, respectively (see Fig. 1). This suggests the need for further standardization of analysis methods. In conclusion, we found that intra-site precision was within an acceptable range for repeat measurements in the majority of iron overloaded subjects. Prediction of liver iron concentration at the three centers was highly correlated. Figure 1. Agreement (Passing-Bablok regression) between liver iron measurements (mean LIC from 2 positions) by the SQUID biosusceptometer system in Hamburg (LIC-UKE) and the systems in Torino (LIC-TOR) and Oakland (LIC-CHO). Figure 1. Agreement (Passing-Bablok regression) between liver iron measurements (mean LIC from 2 positions) by the SQUID biosusceptometer system in Hamburg (LIC-UKE) and the systems in Torino (LIC-TOR) and Oakland (LIC-CHO).


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2173-2173
Author(s):  
Arwa Fraiwan ◽  
Muhammad Noman Hasan ◽  
Ran An ◽  
Amy J. Rezac ◽  
Nicholas J. Kocmich ◽  
...  

Nigeria leads the world in the number of cases of sickle cell disease (SCD). An estimated 150,000 babies are born annually in Nigeria with SCD, a heredity disorder, and 70-90% die before age 5. Only a small portion of affected infants and children in sub Saharan Africa (SSA) reach adolescence. Over 650 children die per day in sub-Saharan Africa from SCD. These dismal statistics are in sharp contrast to outcomes in high-income countries (HICs) where more than 90% of SCD patients reach adulthood. The World Health Organization (WHO) estimates that 70% of deaths could be prevented with a low cost diagnostic and treatment plan. Meaningful preventive care and treatment cannot be implemented without a structured plan for early diagnosis and patient tracking.Early diagnosis requires improved access to parents and guardians of children with SCD, and gaining this access remains a challenge in most of SSA. In 2015, Nigeria's Kano state government, with support from foreign partners, established a community-based program for newborn registration. This platform provides unique access to newborn babies in one of Nigeria's most populous cities, but still lacks a functioning patient testing, tracking, and monitoring system, which we plan to address in our ongoing study. This study will introduce mobile health in a low-income country with low literacy rate and hopefully accustom that segment of the population to more varied mobile health applications that will ultimately improve their health in the long run. Our current operational platform in Kano, Nigeria provides access to a large population with a high prevalence of SCD. We have previously completed pilot testing of 315 subjects for SCD using our microchip electrophoresis test. We are planning to test up to 4,500 additional subjects less than 5 years of age at Murtala Muhammed Specialist Hospital. The hospital staff includes 97 physicians and 415 nurses and outpatient clinics serve about 30,000 patients monthly. The maternity department has a 200-bed capacity and the antenatal clinic performs about 1,000 deliveries and serves an average of 3,000 mothers monthly. Enrollment is planned to start on September 15, 2019 and medical staff are currently being trained to run the tests. Our study is registered in the United States National Library of Medicine's ClinicalTrials.gov (Identifier: NCT03948516). Our technology is uniquely paired with an automatic reader and an Electronic Medical Record (EMR) and patient management solution to record POC test results, register new cases, and track patients for follow-up (Fig. 1). The reader enables automated interpretation of test results, local and remote test data storage, and includes geolocation (Global Positioning System) (Fig. 2). The system will generate reports for all cases of SCD, track hospital visits, appointments, lab tests, and will have mobile and dashboard applications for tracking patients and samples. The application will be installed on mobile devices provided to users. The proposed system will be compliant with the existing privacy standards to handle medical data (e.g., HIPAA in the US and GDPR in the EU). All communications between the parties will be secured via end-to-end encryption as a safeguard. We anticipate that our project will increase the rates of screening, diagnosis and timely treatment of SCD in Kano State of Nigeria. The project's broader impact will likely be the ability to track and monitor screening, disease detection, diagnosis and treatment, which can be scaled up to the whole nation of Nigeria, then to sub-Saharan Africa. The data obtained and analyzed will be the first of their kind and will be used to inform the design of programs to improve access to, and availability of, effective care for this underserved populations. The importance of increased access to diagnosis and treatment should not be underestimated - it is crucial for realizing effective management of people with SCD. The impact can be enhanced by complementing diagnosis and patient tracking with education for the families so they can provide or seek the necessary preventative treatment. Identification of the location of the patients in need would help identify the areas where family, parent, caregiver education should be provided. Disclosures Fraiwan: Hemex Health, Inc.: Equity Ownership, Patents & Royalties. Hasan:Hemex Health, Inc.: Equity Ownership, Patents & Royalties. An:Hemex Health, Inc.: Patents & Royalties. Thota:Hemex Health, Inc.: Employment. Gurkan:Hemex Health, Inc.: Consultancy, Employment, Equity Ownership, Patents & Royalties, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document