scholarly journals Some Properties of Convolved k-Fibonacci Numbers

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
José L. Ramírez

We define the convolved k-Fibonacci numbers as an extension of the classical convolved Fibonacci numbers. Then we give some combinatorial formulas involving the k-Fibonacci and k-Lucas numbers. Moreover we obtain the convolved k-Fibonacci numbers from a family of Hessenberg matrices.

2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


Author(s):  
Yuksel Soykan

In this paper, closed forms of the sum formulas Σn k=0 kW3 k and Σn k=1 kW3-k for the cubes of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery. Our work generalize second order recurrence relations.


2020 ◽  
pp. 66-82
Author(s):  
Y¨uksel Soykan

In this paper, closed forms of the summation formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers are presented. Then, some previous results are recovered as particular cases of the present results. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers and Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal-Lucas numbers.


2020 ◽  
Vol 1 (3) ◽  
pp. 112-122
Author(s):  
Agung Prabowo

Fibonacci numbers, Lucas numbers and Mulatu numbers are built in the same method. The three numbers differ in the first term, while the second term is entirely the same. The next terms are the sum of two successive terms. In this article, generalizations of Fibonacci, Lucas and Mulatu (GFLM) numbers are built which are generalizations of the three types of numbers. The Binet formula is then built for the GFLM numbers, and determines the golden ratio, silver ratio and Bronze ratio of the GFLM numbers. This article also presents generalizations of these three types of ratios, called Metallic ratios. In the last part we state the Metallic ratio in the form of continued fraction and nested radicals.


1965 ◽  
Vol 7 (1) ◽  
pp. 24-28 ◽  
Author(s):  
J. H. E. Cohn

The Lucas numbers υn and the Fibonacci numbers υn are defined by υ1 = 1, υ2= 3, υn+2 = υn+1 + υn and u1 = u2 = 1, un+2 = un+1 + un for all integers n. The elementary properties of these numbers are easily established; see for example [2].However, despite the ease with which many such properties are proved, there are a number of more difficult questions connected with these numbers, of which some are as yet unanswered. Among these there is the well-known conjecture that un is a perfect square only if n = 0, ± 1, 2 or 12. This conjecture was proved correct in [1]. The object of this paper is to prove similar results for υn, ½un and ½υn, and incidentally to simplify considerably the proof for un. Secondly, we shall use these results to solve certain Diophantine equations.


2007 ◽  
Vol 91 (521) ◽  
pp. 216-226 ◽  
Author(s):  
Barry Lewis

This article sets out to explore some of the connections between two seemingly distinct mathematical objects: trigonometric functions and the integer sequences composed of the Fibonacci and Lucas numbers. It establishes that elements of Fibonacci/Lucas sequences obey identities that are closely related to traditional trigonometric identities. It then exploits this relationship by converting existing trigonometric results into corresponding Fibonacci/Lucas results. Along the way it uses mathematical tools that are not usually associated with either of these objects.


Sign in / Sign up

Export Citation Format

Share Document