Some identities involving Chebyshev polynomials, Fibonacci numbers and Lucas numbers

Author(s):  
Sanjay Harne ◽  
V. H. Badshah ◽  
Vipin Verma
2012 ◽  
Vol 62 (3) ◽  
Author(s):  
Jaroslav Seibert ◽  
Pavel Trojovský

AbstractThe aim of this paper is to give new results about factorizations of the Fibonacci numbers F n and the Lucas numbers L n. These numbers are defined by the second order recurrence relation a n+2 = a n+1+a n with the initial terms F 0 = 0, F 1 = 1 and L 0 = 2, L 1 = 1, respectively. Proofs of theorems are done with the help of connections between determinants of tridiagonal matrices and the Fibonacci and the Lucas numbers using the Chebyshev polynomials. This method extends the approach used in [CAHILL, N. D.—D’ERRICO, J. R.—SPENCE, J. P.: Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41 (2003), 13–19], and CAHILL, N. D.—NARAYAN, D. A.: Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart. 42 (2004), 216–221].


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Lan Zhang ◽  
Wenpeng Zhang

The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yang Li

We study the relationship of the Chebyshev polynomials, Fibonacci polynomials, and theirrth derivatives. We get the formulas for therth derivatives of Chebyshev polynomials being represented by Chebyshev polynomials and Fibonacci polynomials. At last, we get several identities about the Fibonacci numbers and Lucas numbers.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


Author(s):  
Yuksel Soykan

In this paper, closed forms of the sum formulas Σn k=0 kW3 k and Σn k=1 kW3-k for the cubes of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery. Our work generalize second order recurrence relations.


2020 ◽  
pp. 66-82
Author(s):  
Y¨uksel Soykan

In this paper, closed forms of the summation formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers are presented. Then, some previous results are recovered as particular cases of the present results. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers and Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal-Lucas numbers.


2020 ◽  
Vol 12 (2) ◽  
pp. 280-286
Author(s):  
Carlos M. da Fonseca

AbstractIn this note, we recall several connections between the determinant of some tridiagonal matrices and the orthogonal polynomials allowing the relation between Chebyshev polynomials of second kind and Fibonacci numbers. With basic transformations, we are able to recover some recent results on this matter, bringing them into one place.


Sign in / Sign up

Export Citation Format

Share Document