scholarly journals An Improved Ant Colony Algorithm and Its Application in Vehicle Routing Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Min Huang ◽  
Ping Ding

Optimal path planning is an important issue in vehicle routing problem. This paper proposes a new vehicle routing path planning method which adds path weight matrix and save matrix. The method uses a new transition probability function adding the angle factor function and visibility function, while setting penalty function in a new pheromone updating model to improve the accuracy of the route searching. Finally, after each cycle, we use 3-opt method to update the optimal solution to optimize the path length. The results of comparison also confirm that this method is better than the traditional ant colony algorithm for vehicle routing path planning method. The result of computer simulation confirms that the method can plan a more rational rescue path focused on the real traffic situation.

2014 ◽  
Vol 1030-1032 ◽  
pp. 1941-1944
Author(s):  
Hong Dou Zhang ◽  
Ning Guo ◽  
Jian Lin Mao ◽  
Hai Feng Wang

Vehicle routing problem with time Windows (VRPTW) that is a kind of important extension type for VPR. In view of problem which the ant colony algorithm in solving VRPTW easily plunged into local optimum , this paper defines a new ant transition probability of saving ideas, and uses the Pareto optimal solution set of global pheromone updating rule, and puts forward a kind of improved Pareto ant colony algorithm (IPACA) . Through the simulation experiments show that IPACA improves the global search ability of ACA, effectively avoids the algorithm falls into local optimum, and reduces the total distribution cost (distance), so as to verify the effectiveness of the proposed algorithm.


Author(s):  
Hongguang Wu ◽  
Yuelin Gao ◽  
Wanting Wang ◽  
Ziyu Zhang

AbstractIn this paper, we propose a vehicle routing problem with time windows (TWVRP). In this problem, we consider a hard time constraint that the fleet can only serve customers within a specific time window. To solve this problem, a hybrid ant colony (HACO) algorithm is proposed based on ant colony algorithm and mutation operation. The HACO algorithm proposed has three innovations: the first is to update pheromones with a new method; the second is the introduction of adaptive parameters; and the third is to add the mutation operation. A famous Solomon instance is used to evaluate the performance of the proposed algorithm. Experimental results show that HACO algorithm is effective against solving the problem of vehicle routing with time windows. Besides, the proposed algorithm also has practical implications for vehicle routing problem and the results show that it is applicable and effective in practical problems.


2011 ◽  
Vol 219-220 ◽  
pp. 1285-1288 ◽  
Author(s):  
Chang Min Chen ◽  
Wei Cheng Xie ◽  
Song Song Fan

Vehicle routing problem (VRP) is the key to reducing the cost of logistics, and also an NP-hard problem. Ant colony algorithm is a very effective method to solve the VRP, but it is easy to fall into local optimum and has a long search time. In order to overcome its shortcomings, max-min ant colony algorithm is adopted in this paper, and its simulation system is designed in GUI of MATLAB7.0. The results show that the vehicle routing problem can well achieves the optimization of VRP by accessing the simulation data of database.


2013 ◽  
Vol 397-400 ◽  
pp. 2439-2446 ◽  
Author(s):  
Zheng Qiang Jiang ◽  
Yue Wu

Vehicle Routing Problem (VRP) plays a vital role in mathematical and logistics research. Its a typical NP-Hard problem, and ant colony algorithm has been proven to be an effect way in solving these problems. An improved ant colony algorithm is proposed to solve VRP on the basis of depth analyzing VRP and ant colony algorithm. It proposes the mathematical model of VRP and designs an improved ant colony algorithm, considering the inefficient solving, easy to partial stagnation shortcomings of ant colony algorithm and the attraction, repulsion, time constraint phenomena in VRP. This paper redesigns the pheromone update rule and the state transition rule and then it makes a simulation experiment by MATLAB programming, the results show that the improved ant colony is feasible and very valid in solving VRP.


Sign in / Sign up

Export Citation Format

Share Document