scholarly journals The Complex Network Synchronization via Chaos Control Nodes

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yin Li ◽  
Chun-long Zheng

We investigate chaos control nodes of the complex network synchronization. The structure of the coupling functions between the connected nodes is obtained based on the chaos control method and Lyapunov stability theory. Moreover a complex network with nodes of the new unified Loren-Chen-Lü system, Coullet system, Chee-Lee system, and the New system is taken as an example; numerical simulations are used to verify the effectiveness of the method.

2011 ◽  
Vol 25 (27) ◽  
pp. 3671-3678 ◽  
Author(s):  
XING-YUAN WANG ◽  
MING-JUN WANG

In this paper, the impulsive synchronization of hyperchaotic Lü systems is discussed. The sufficient conditions on feedback strength and impulsive interval are established to guarantee the synchronization. The method is proved true by Lyapunov stability theory. In addition, a scheme of impulsive synchronization via transmitting single signal is presented. Numerical simulations show the effectiveness of the methods.


2014 ◽  
Vol 65 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Rajagopal Karthikeyan ◽  
Vaidyanathan Sundarapandian

Abstract This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


2014 ◽  
Vol 24 (3) ◽  
pp. 257-270 ◽  
Author(s):  
Bohui Wen ◽  
Mo Zhao ◽  
Fanyu Meng

Abstract This paper investigates the pinning synchronization of two general complex dynamical networks with lag. The coupling configuration matrices in the two networks are not need to be symmetric or irreducible. Several convenient and useful criteria for lag synchronization are obtained based on the lemma of Schur complement and the Lyapunov stability theory. Especially, the minimum number of controllers in pinning control can be easily obtained. At last, numerical simulations are provided to verify the effectiveness of the criteria


2013 ◽  
Vol 325-326 ◽  
pp. 1210-1214
Author(s):  
Costin Ene

In this paper, an adaptive backstepping type design is proposed to control the complex nonlinear behavior of the wing rock phenomenon. This method, based on Lyapunov stability theory, can simultaneouslyachieve parameters identification and control.Finally numerical simulations are presented to justify the effectiveness of the proposed controller.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Adel Ouannas

The problems of full-state hybrid projective synchronization (FSHPS) and inverse full-state hybrid projective synchronization (IFSHPS) for general discrete chaotic systems are investigated in 2D. Based on nonlinear control method and Lyapunov stability theory, new controllers are designed to study FSHPS and IFSHPS, respectively, for 2D arbitrary chaotic systems in discrete-time. Numerical example and simulations are used to validate the main results of this paper.


Author(s):  
Shko Ali-Tahir ◽  
Murat Sari ◽  
Abderrahman Bouhamidi

The main objective of this work is to discuss a generalized synchronization of a coupled chaotic identicaland nonidentical dynamical systems. We propose a method used to study generalized synchronization in masterslavesystems. This method, is based on the classical Lyapunov stability theory, utilizes the master continuous timechaotic system to monitor the synchronized motions. Various numerical simulations are performed to verify theeffectiveness of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Wang ◽  
Yongguang Yu ◽  
Hu Wang

The robust synchronization of hyperchaotic systems with uncertainties and external disturbances is investigated. Based on the Lyapunov stability theory, the appropriate adaptive controllers and parameter update laws are designed to achieve the synchronization of uncertain hyperchaotic systems. The robust synchronization of two hyperchaotic Chen systems is taken as an example to verify the feasibility of the presented schemes. The size of the subcontroller gain’s influences on the convergence speed is discussed. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed synchronization schemes.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Pengyu Li ◽  
Juan Du ◽  
Shouliang Li ◽  
Yazhao Zheng ◽  
Bowen Jia

In this paper, we investigate a novel synchronization method, which consists of nn≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the corresponding numerical simulations demonstrate the effectiveness of our idea.


Sign in / Sign up

Export Citation Format

Share Document