scholarly journals New Results on Markov Moment Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Octav Olteanu

The present work deals with the existence of the solutions of some Markov moment problems. Necessary conditions, as well as necessary and sufficient conditions, are discussed. One recalls the background containing applications of extension results of linear operators with two constraints to the moment problem and approximation by polynomials on unbounded closed finite-dimensional subsets. Two domain spaces are considered: spaces of absolute integrable functions and spaces of analytic functions. Operator valued moment problems are solved in the latter case. In this paper, there is a section that contains new results, making the connection to some other topics: bang-bang principle, truncated moment problem, weak compactness, and convergence. Finally, a general independent statement with respect to polynomials is discussed.

1985 ◽  
Vol 28 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Olav Njåstad

The classical Hamburger moment problem can be formulated as follows: Given a sequence {cn:n=0,1,2,…} of real numbers, find necessary and sufficient conditions for the existence of a distribution function ψ (i.e. a bounded, real-valued, non-decreasing function) on (– ∞,∞) with infinitely many points of increase, such that , n = 0,1,2, … This problem was posed and solved by Hamburger [5] in 1921. The corresponding problem for functions ψ on the interval [0,∞) had already been treated by Stieltjes [15] in 1894. The characterizations were in terms of positivity of Hankel determinants associated with the sequence {cn}, and the original proofs rested on the theory of continued fractions. Much work has since been done on questions connected with these problems, using orthogonal functions and extension of positive definite functionals associated with the sequence. Accounts of the classical moment problems with later developments can be found in [1,4,14]. Good modern accounts of the theory of orthogonal polynomials can be found in [2,3].


2019 ◽  
Vol 18 (02) ◽  
pp. 185-210 ◽  
Author(s):  
Mourad E. H. Ismail

We study the moment problem associated with the Al-Salam–Chihara polynomials in some detail providing raising (creation) and lowering (annihilation) operators, Rodrigues formula, and a second-order operator equation involving the Askey–Wilson operator. A new infinite family of weight functions is also given. Sufficient conditions for functions to be weight functions for the [Formula: see text]-Hermite, [Formula: see text]-Laguerre and Stieltjes–Wigert polynomials are established and used to give new infinite families of absolutely continuous orthogonality measures for each of these polynomials.


1961 ◽  
Vol 13 ◽  
pp. 454-461
Author(s):  
P. G. Rooney

Let K be a subset of BV(0, 1)—the space of functions of bounded variation on the closed interval [0, 1]. By the Hausdorff moment problem for K we shall mean the determination of necessary and sufficient conditions that corresponding to a given sequence μ = {μn|n = 0, 1, 2, …} there should be a function α ∈ K so that(1)For various collections K this problem has been solved—see (3, Chapter III)By the trigonometric moment problem for K we shall mean the determination of necessary and sufficient conditions that corresponding to a sequence c = {cn|n = 0, ± 1, ± 2, …} there should be a function α ∈ K so that(2)For various collections K this problem has also been solved—see, for example (4, Chapter IV, § 4). It is noteworthy that these two problems have been solved for essentially the same collections K.


2021 ◽  
Vol 28 (02) ◽  
Author(s):  
Xiuhong Sun ◽  
Yuan Li

In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].


2009 ◽  
Vol 20 (11) ◽  
pp. 1431-1454
Author(s):  
VICTOR J. MIZEL ◽  
M. M. RAO

In this paper bounded linear operators in Hilbert space satisfying general quadratic equations are characterized. Necessary and sufficient conditions for sets of operators satisfying two such equations to compare relative to a weak ordering are presented. In addition, averaging operators in finite dimensional spaces are determined, and in this case it is shown that they are unitary models for all projections. It is pointed out, by an example, that the latter result does not hold in infinite dimensions. A key application to certain second order random fields of Karhunen type is given. The main purpose is to present the structure of bounded non-self adjoint operators solving quadratic equations, and indicate their use.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Sergey Zagorodnyuk

We consider the problem of finding a (non-negative) measure μ on B(Cn) such that ∫Cnzkdμ(z)=sk, ∀k∈K. Here, K is an arbitrary finite subset of Z+n, which contains (0,…,0), and sk are prescribed complex numbers (we use the usual notations for multi-indices). There are two possible interpretations of this problem. Firstly, one may consider this problem as an extension of the truncated multidimensional moment problem on Rn, where the support of the measure μ is allowed to lie in Cn. Secondly, the moment problem is a particular case of the truncated moment problem in Cn, with special truncations. We give simple conditions for the solvability of the above moment problem. As a corollary, we have an integral representation with a non-negative measure for linear functionals on some linear subspaces of polynomials.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2289
Author(s):  
Octav Olteanu

Firstly, we recall the classical moment problem and some basic results related to it. By its formulation, this is an inverse problem: being given a sequence (yj)j∈ℕn  of real numbers and a closed subset F⊆ℝn, n∈{1,2,…}, find a positive regular Borel measure μ on F such that ∫Ftjdμ=yj, j∈ℕn. This is the full moment problem. The existence, uniqueness, and construction of the unknown solution μ are the focus of attention. The numbers yj, j∈ℕn are called the moments of the measure μ. When a sandwich condition on the solution is required, we have a Markov moment problem. Secondly, we study the existence and uniqueness of the solutions to some full Markov moment problems. If the moments yj are self-adjoint operators, we have an operator-valued moment problem. Related results are the subject of attention. The truncated moment problem is also discussed, constituting the third aim of this work.


1970 ◽  
Vol 22 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Melvin Band

Let F be a local field with ring of integers and unique prime ideal (p). Suppose that V a finite-dimensional regular quadratic space over F, W and W′ are two isometric subspaces of V (i.e. τ: W → W′ is an isometry from W to W′). By the well-known Witt's Theorem, τ can always be extended to an isometry σ ∈ O(V).The integral analogue of this theorem has been solved over non-dyadic local fields by James and Rosenzweig [2], over the 2-adic fields by Trojan [4], and partially over the dyadics by Hsia [1], all for the special case that W is a line. In this paper we give necessary and sufficient conditions that two arbitrary dimensional subspaces W and W′ are integrally equivalent over non-dyadic local fields.


1991 ◽  
Vol 34 (2) ◽  
pp. 224-228
Author(s):  
Morton E. Harris

AbstractLet G be a finite group, let k be a field and let R be a finite dimensional fully G-graded k-algebra. Also let L be a completely reducible R-module and let P be a projective cover of R. We give necessary and sufficient conditions for P|R1 to be a projective cover of L|R1 in Mod (R1). In particular, this happens if and only if L is R1-projective. Some consequences in finite group representation theory are deduced.


Sign in / Sign up

Export Citation Format

Share Document