On the Hausdorff and Trigonometric Moment Problems

1961 ◽  
Vol 13 ◽  
pp. 454-461
Author(s):  
P. G. Rooney

Let K be a subset of BV(0, 1)—the space of functions of bounded variation on the closed interval [0, 1]. By the Hausdorff moment problem for K we shall mean the determination of necessary and sufficient conditions that corresponding to a given sequence μ = {μn|n = 0, 1, 2, …} there should be a function α ∈ K so that(1)For various collections K this problem has been solved—see (3, Chapter III)By the trigonometric moment problem for K we shall mean the determination of necessary and sufficient conditions that corresponding to a sequence c = {cn|n = 0, ± 1, ± 2, …} there should be a function α ∈ K so that(2)For various collections K this problem has also been solved—see, for example (4, Chapter IV, § 4). It is noteworthy that these two problems have been solved for essentially the same collections K.

1978 ◽  
Vol 21 (3) ◽  
pp. 257-265
Author(s):  
David Borwein

Suppose throughout thatand that {μn}(n≥ 0) is a sequence of real numbers. The (generalized) Hausdorff moment problem is to determine necessary and sufficient conditions for there to be a function x in some specified class satisfying.


1981 ◽  
Vol 33 (4) ◽  
pp. 946-960 ◽  
Author(s):  
David Borwein ◽  
Amnon Jakimovski

Suppose throughout that {kn} is a sequence of positive integers, thatthat k0 = 1 if l0 = 1, and that {un(r)}; (r = 0, 1, …, kn – 1, n = 0, 1, …) is a sequence of real numbers. We shall be concerned with the problem of establishing necessary and sufficient conditions for there to be a function a satisfying(1)and certain additional conditions. The case l0 = 0, kn = 1 for n = 0, 1, … of the problem is the version of the classical moment problem considered originally by Hausdorff [5], [6], [7]; the above formulation will emerge as a natural generalization thereof.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


1980 ◽  
Vol 32 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Bonnie R. Hardy ◽  
Thomas S. Shores

Throughout this paper the ring R and the semigroup S are commutative with identity; moreover, it is assumed that S is cancellative, i.e., that S can be embedded in a group. The aim of this note is to determine necessary and sufficient conditions on R and S that the semigroup ring R[S] should be one of the following types of rings: principal ideal ring (PIR), ZPI-ring, Bezout, semihereditary or arithmetical. These results shed some light on the structure of semigroup rings and provide a source of examples of the rings listed above. They also play a key role in the determination of all commutative reduced arithmetical semigroup rings (without the cancellative hypothesis on S) which will appear in a forthcoming paper by Leo Chouinard and the authors [4].


1985 ◽  
Vol 28 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Olav Njåstad

The classical Hamburger moment problem can be formulated as follows: Given a sequence {cn:n=0,1,2,…} of real numbers, find necessary and sufficient conditions for the existence of a distribution function ψ (i.e. a bounded, real-valued, non-decreasing function) on (– ∞,∞) with infinitely many points of increase, such that , n = 0,1,2, … This problem was posed and solved by Hamburger [5] in 1921. The corresponding problem for functions ψ on the interval [0,∞) had already been treated by Stieltjes [15] in 1894. The characterizations were in terms of positivity of Hankel determinants associated with the sequence {cn}, and the original proofs rested on the theory of continued fractions. Much work has since been done on questions connected with these problems, using orthogonal functions and extension of positive definite functionals associated with the sequence. Accounts of the classical moment problems with later developments can be found in [1,4,14]. Good modern accounts of the theory of orthogonal polynomials can be found in [2,3].


Author(s):  
Lu-San Chen ◽  
Cheh-Chih Yeh

SynopsisThis paper studies the equationwhere the differential operator Ln is defined byand a necessary and sufficient condition that all oscillatory solutions of the above equation converge to zero asymptotically is presented. The results obtained extend and improve previous ones of Kusano and Onose, and Singh, even in the usual case wherewhere N is an integer with l≦N≦n–1.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Octav Olteanu

The present work deals with the existence of the solutions of some Markov moment problems. Necessary conditions, as well as necessary and sufficient conditions, are discussed. One recalls the background containing applications of extension results of linear operators with two constraints to the moment problem and approximation by polynomials on unbounded closed finite-dimensional subsets. Two domain spaces are considered: spaces of absolute integrable functions and spaces of analytic functions. Operator valued moment problems are solved in the latter case. In this paper, there is a section that contains new results, making the connection to some other topics: bang-bang principle, truncated moment problem, weak compactness, and convergence. Finally, a general independent statement with respect to polynomials is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
L. Lemnete-Ninulescu

Solutions to some operator-valued, unidimensional, Hamburger and Stieltjes moment problems in this paper are given. Necessary and sufficient conditions on some sequences of bounded operators being Hamburger, respectively, Stieltjes operator-valued moment sequences are obtained. The determinateness of the operator-valued Hamburger and Stieltjes moment sequence is studied.


1972 ◽  
Vol 45 ◽  
pp. 227-232 ◽  
Author(s):  
E. I. Kazimirchak-Polonskaya

Necessary and sufficient conditions are formulated for determining the mass of Jupiter from large perturbations induced in cometary orbits in the sphere of action of Jupiter. A procedure for the investigation has been developed and programmed for an electronic computer. Comparison of heliocentric and jovicentric computations shows that the perturbations on P/Wolf could be determined with great accuracy when this comet passed through Jupiter's sphere of action in 1922. The first attempt has been made to determine the mass of Jupiter using this passage and the observations of the comet in 1925. The resulting value for the reciprocal mass is 1047.345.


Sign in / Sign up

Export Citation Format

Share Document