scholarly journals The Similar Structure Method for Solving the Model of Fractal Dual-Porosity Reservoir

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Li Xu ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Shunchu Li ◽  
Longtao Zhou

This paper proposes a similar structure method (SSM) to solve the boundary value problem of the extended modified Bessel equation. The method could efficiently solve a second-order linear homogeneous differential equation’s boundary value problem and obtain its solutions’ similar structure. A mathematics model is set up on the dual-porosity media, in which the influence of fractal dimension, spherical flow, wellbore storage, and skin factor is taken into cosideration. Researches in the model found that it was a special type of the extended modified Bessel equation in Laplace space. Then, the formation pressure and wellbore pressure under three types of outer boundaries (infinite, constant pressure, and closed) are obtained via SSM in Laplace space. Combining SSM with the Stehfest algorithm, we propose the similar structure method algorithm (SSMA) which can be used to calculate wellbore pressure and pressure derivative of reservoir seepage models clearly. Type curves of fractal dual-porosity spherical flow are plotted by SSMA. The presented algorithm promotes the development of well test analysis software.

1991 ◽  
Vol 6 (03) ◽  
pp. 393-400
Author(s):  
D.M. Walsh ◽  
K.H. Leung

1989 ◽  
Vol 4 (03) ◽  
pp. 429-437 ◽  
Author(s):  
M. Onur ◽  
N. Yeh ◽  
A.C. Reynolds

2004 ◽  
Author(s):  
Freddy Humberto Escobar ◽  
Juan Miguel Navarrete ◽  
Hernãn Dario Losada

1981 ◽  
Vol 21 (01) ◽  
pp. 98-104 ◽  
Author(s):  
C.A. Ehlig-Economides ◽  
H.J. Ramey

Abstract Although constant-rate production is assumed in the development of conventional well test analysis methods, constant-pressure production conditions are not uncommon. Conditions under which constant-pressure flow is maintained at a well include production into a constant-pressure separator or pipeline, steam production into a backpressured turbine, or open flow to the atmosphere.To perform conventional well test analysis on such wells, one common procedure is to flow the well at a constant rate for several days before performing the test. This procedure is not always effective, and often the delay could be avoided by performing transient rate tests instead. Practical methods for transient rate analysis of wells produced at constant pressure are presented in this paper. The most important test is the analysis of the rate response to a step change in producing pressure. This test allows type-curve analysis of the transient rate response without the complication of wellbore storage effects. Reservoir permeability, porosity, and the wellbore skin factor can be determined from the type-curve match. The reservoir limit test is also important. Exponential rate decline can be analyzed to determine the drainage area of a well and the shape factor.The effect of the pressure drop in the wellbore due to flowing friction is investigated. Constant wellhead-pressure flow causes a variable pressure at the sandface because the pressure drop from flowing friction is dependent on the transient rate. Finally, for testing of new wells, the effect of a limited initial flow rate due to critical flow phenomena is examined. Introduction Fundamental considerations suggest that conventional pressure drawdown and buildup analysis methods developed for constant-rate production should not be appropriate for a well produced at a constant pressure. However, a well produced at a constant pressure exhibits a transient rate decline which can be analyzed using techniques analogous to the methods for constant-rate flow. In this paper, analytical solutions for the transient rate decline for wells produced at constant pressure are used to determine practical well test analysis methods.Many of the basic analytical solutions for transient rate decline have been available for some time. The first solutions were published by Moore et al. and Hurst. Results were presented in graphical form for bounded and unbounded reservoirs in which the flow was radial and the single-phase fluid was slightly compressible. Tables of dimensionless flow rate vs. dimensionless time were provided later by Ferris et al. for the unbounded system and by Tsarevich and Kuranov for the closed-boundary circular reservoir. Tsarevich and Kuranov also provided tabulated solutions for the cumulative production from a closed-boundary reservoir. Van Everdingen and Hurst presented solutions and tables of the cumulative production for constant-pressure production. Fetkovich developed log-log type curves for transient rate vs. sine in the closed-boundary circular reservoir. Type curves for rate decline in closed-boundary reservoirs with pressure-sensitive rock and fluid properties were developed by Samaniego and Cinco. A method for determining the skin effect was given by Earlougher. Type curves for analysis of the transient rate response when the well penetrates a fracture were developed by Prats et al. and Locke and Sawyer. SPEJ P. 98^


Sign in / Sign up

Export Citation Format

Share Document