geothermal well
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 69)

H-INDEX

17
(FIVE YEARS 5)

Geothermics ◽  
2022 ◽  
Vol 100 ◽  
pp. 102322
Author(s):  
Yu Yang ◽  
Kaipeng Wang ◽  
Hao Zhang ◽  
Shuanhai Xu ◽  
Weidong Zhang ◽  
...  

2021 ◽  
pp. 014459872110663
Author(s):  
Dong Xiao ◽  
Jiaxin Xu ◽  
Tianduoyi Wang ◽  
Chun Cai ◽  
Li Li ◽  
...  

Closed-loop U-shaped geothermal wells show great potential owing to their special well-depth structure, which can provide a good flow rate and heat extraction. However, no advanced process parameter optimization method is available for U-shaped geothermal wells. To effectively describe the heat transfer processes of U-shaped geothermal wells, an analytical solution that couples transient heat conduction in the surrounding soil (or rocks) with the quasisteady heat transfer process in boreholes was developed. This modelling approach depends on many common elements, such as the thermophysical properties of the working fluid and series of resistances for various elements in the wellbore. Subsequently, based on the exergy analysis method, the optimal operating flow rate was defined and a design method for the optimal flow rate was developed. Results indicate that to obtain the maximum exergy efficiency, different optimal flow rates for the U-shaped geothermal well are achieved at different stages of the heating period. This findings of this study expand the research ideas of the process parameter optimization of U-shaped geothermal wells and provide a theoretical basis for developing an optimal circulating-flow-rate design for U-shaped geothermal wells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junyi Gao ◽  
Qipeng Shi

AbstractThe water temperature at the outlet of the production well is an important index for evaluating efficient geothermal exploration. The arrangement mode of injection wells and production wells directly affects the temperature distribution of the production wells. However, there is little information about the effect of different injection and production wells on the temperature field of production wells and rock mass, so it is critical to solve this problem. To study the influence mechanism of geothermal well arrangement mode on thermal exploration efficiency, the conceptual model of four geothermal wells is constructed by using discrete element software, and the influence law of different arrangement modes of four geothermal wells on rock mass temperature distribution is calculated and analyzed. The results indicated that the maximum water temperature at the outlet of the production well was 84.0 °C due to the thermal superposition effect of the rock mass between the adjacent injection wells and between the adjacent production wells. Inversely, the minimum water temperature at the outlet of the production well was 50.4 °C, which was determined by the convection heat transfer between the water flow and the rock between the interval injection wells and the interval production wells. When the position of the model injection well and production well was adjusted, the isothermal number line of rock mass was almost the same in value, but the direction of water flow and heat transfer was opposite. The study presented a novel mathematical modeling approach for calculating thermal exploration efficiency under various geothermal well layout conditions.


Geothermics ◽  
2021 ◽  
Vol 96 ◽  
pp. 102146
Author(s):  
Hannes Hofmann ◽  
Günter Zimmermann ◽  
Ernst Huenges ◽  
Simona Regenspurg ◽  
Santiago Aldaz ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Mikhail Yakovlevich Gelfgat ◽  
Aleksandr Sergeevich Geraskin

Abstract The geothermal energy is one of the most promising sources of electricity on the planet; it is available almost anywhere on the continents and resources are inexhaustible. The realization of these possibilities requires solving the problems of deep wells (6-10 km) construction, when the lower horizons are practically impermeable crystalline basement rocks. For effective use of the Earth's heat, bottomhole temperatures must be within 200-300°C. World experience of such deep wells construction is very limited, some examples are given in this work. Known schemes of geothermal energy application requires at least two wells construction - for cold fluid injection and superheated fluid production. The rock - circulating fluid heat exchange in the bottomhole requires drilling of inclined, horizontal, or multi-lateral boreholes and hydraulic fracturing application. Such technologies are widely used in the oil and gas fields, but not in crystalline rocks. The article presents an analysis of the prospects for the geothermal wells construction efficiency increasing by using modern directional drilling systems, drilling with casing, technologies for complications eliminating. The possibilities of using alternative hard rock drilling methods by enhancing the standard formation destruction with drill bits are discussed. These are hydraulic hammers, high-pressure abrasive and fluid jets, laser drilling. A fundamentally new plasma drilling technology is considered. The most serious limitation of alternative drilling prospects is the need of additional "supply lines" to the bottom: high-pressure fluid; electricity; a plasma forming agent, etc. In this regard, options are being considered for the development of continuous drill strings such as coiled tubing, umbilical, flexible composite systems like subsea pipelines. Some of technological solutions for deep geothermal wells construction, and implementation of petrothermal energy schemes for potential projects are proposed. The paper provides an idea of the geothermal well construction technologies, which can ensure the implementation of advanced geo-energy schemes. The problems of geothermal engineering and possible solutions to overcome them, which will contribute to the development of geothermal energy, as the most effective option for decarbonization, are indicated.


2021 ◽  
Author(s):  
Junichi Sugiura ◽  
Ramon Lopez ◽  
Francisco Borjas ◽  
Steve Jones ◽  
John McLennan ◽  
...  

Abstract Geothermal energy is used in more than 20 countries worldwide and is a clean, reliable, and relatively available energy source. Nevertheless, to make geothermal energy available anywhere in the world, technical and economic challenges need to be addressed. Drilling especially is a technical challenge and comprises a significant part of the geothermal development cost. An enhanced geothermal system (EGS) is a commercially viable thermal reservoir where two wells are interconnected by some form of hydraulic stimulation. In a commercial setting, fluid is injected into this hot rock and passes between wells through a network of natural and induced fractures to transport heat to the surface system for electricity generation. To construct EGS wells, vertical and directional drilling is necessary with purpose-built drilling and steering equipment. This is an application where oil-and-gas drilling tools and techniques can be applied. A recent well, 16A(78)-32, drilled as part of the US Department of Energy's (DOE's) Utah Frontier Observatory for Research in Geothermal Energy (FORGE) program, highlights some of the technical challenges, which include drilling an accurate vertical section, a curve section, and a 5300-ft 65° tangent section in a hard granitic formation at temperatures up to 450°F (232°C). Extensive downhole temperature simulations were performed to select fit-for-purpose drilling equipment such as purely mechanical vertical drilling tools, instrumented steerable downhole motors, measurement-while-drilling (MWD) tools, and embedded high-frequency drilling dynamics recorders. Downhole and surface drilling dynamics data were used to fine- tune bit design and motor power section selection and continuously improve the durability of equipment, drilling efficiency, and footage drilled. Drilling optimization techniques used in oil and gas settings were successfully applied to this well, including analysis of data from drilling dynamics sensors embedded in the steerable motors and vertical drilling tools, surface surveillance of mechanical specific energy (MSE), and adopting a drilling parameter roadmap to improve drilling efficiency to minimize drilling dysfunctions and equipment damages. Through drilling optimization practices, the instrumented steerable motors with proper bit selections were able to drill more than 40 ft/hr on average, doubling the rate of penetration (ROP), footage, and run length experienced in previous granite wells. This paper presents a case study in which cutting-edge oil-and-gas drilling technologies were successfully applied to reduce the geothermal well drilling time by approximately half.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongyan Li ◽  
Pengtao Wang ◽  
Bin Liu ◽  
Xianyu Zhang ◽  
Hai Huang ◽  
...  

When the typically utilized method for detecting the drilling conditions of high-temperature geothermal wells is applied, the detection takes a long time, the detection results are inconsistent with the actual conditions, and there are problems such as low detection efficiency and large detection deviation. Therefore, a method for detecting the drilling conditions of high-temperature geothermal wells described by a unit quaternion is proposed. Based on quaternion theory, the quaternion model of the position and attitude is constructed to obtain the drilling attitude. According to the analysis results and the basic principle of kernel principal component analysis, a model is built to realize the detection of high-temperature geothermal well drilling conditions. The experimental results show that in many iterations, the time required is stable and lower than that of other comparison methods, and the detection errors are all lower than 10%. The proposed method has high detection efficiency and low detection errors.


2021 ◽  
Vol 819 (1) ◽  
pp. 012019
Author(s):  
Untung Sumotarto ◽  
Yudistian Yunis ◽  
Fajar Hendrasto ◽  
Kris Pudyastuti ◽  
Evan R. Sammuel ◽  
...  

2021 ◽  
pp. 100213
Author(s):  
Abdullah Almtairi ◽  
Mohamed A. Sharaf Eldean ◽  
A.M. Soliman ◽  
Abdelnasser Mabrouk ◽  
Hassan E.S. Fath

Sign in / Sign up

Export Citation Format

Share Document