Iterative methods with fourth-order convergence for nonlinear equations

2007 ◽  
Vol 189 (1) ◽  
pp. 221-227 ◽  
Author(s):  
Khalida Inayat Noor ◽  
Muhammad Aslam Noor
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 55 ◽  
Author(s):  
Shengfeng Li ◽  
Xiaobin Liu ◽  
Xiaofang Zhang

In this paper, a few single-step iterative methods, including classical Newton’s method and Halley’s method, are suggested by applying [ 1 , n ] -order Padé approximation of function for finding the roots of nonlinear equations at first. In order to avoid the operation of high-order derivatives of function, we modify the presented methods with fourth-order convergence by using the approximants of the second derivative and third derivative, respectively. Thus, several modified two-step iterative methods are obtained for solving nonlinear equations, and the convergence of the variants is then analyzed that they are of the fourth-order convergence. Finally, numerical experiments are given to illustrate the practicability of the suggested variants. Henceforth, the variants with fourth-order convergence have been considered as the imperative improvements to find the roots of nonlinear equations.


2016 ◽  
Vol 30 (2) ◽  
pp. 65-72
Author(s):  
Jivandhar Jnawali ◽  
Chet Raj Bhatta

In this paper, we obtain fourth order iterative method for solving nonlinear equations by combining arithmetic mean Newton method, harmonic mean Newton method and midpoint Newton method uniquely. Also, some variant of Newton type methods based on inverse function have been developed. These methods are free from second order derivatives.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Eisa Al-Said ◽  
Muhammad Waseem

We suggest and analyze some new iterative methods for solving the nonlinear equationsf(x)=0using the decomposition technique coupled with the system of equations. We prove that new methods have convergence of fourth order. Several numerical examples are given to illustrate the efficiency and performance of the new methods. Comparison with other similar methods is given.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We develop a family of fourth-order iterative methods using the weighted harmonic mean of two derivative functions to compute approximate multiple roots of nonlinear equations. They are proved to be optimally convergent in the sense of Kung-Traub’s optimal order. Numerical experiments for various test equations confirm well the validity of convergence and asymptotic error constants for the developed methods.


2009 ◽  
Vol 53 (4) ◽  
pp. 485-495 ◽  
Author(s):  
Alicia Cordero ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


Sign in / Sign up

Export Citation Format

Share Document