hyperbolic function solutions
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Tianyong Han ◽  
Zhao Li

In this paper, the complete discrimination system method is used to construct the exact traveling wave solutions for fractional coupled Boussinesq equations in the sense of conformable fractional derivatives. As a result, we get the exact traveling wave solutions of fractional coupled Boussinesq equations, which include rational function solutions, Jacobian elliptic function solutions, implicit solutions, hyperbolic function solutions, and trigonometric function solutions. Finally, the obtained solution is compared with the existing literature.


Author(s):  
Li Yan ◽  
Ajay Kumar ◽  
Juan Luis García Guirao ◽  
Haci Mehmet Baskonus ◽  
Wei Gao

In this paper, the rational sine–cosine and rational sinh–cosh methods are applied in extracting some properties of nonlinear Phi-four and Gross–Pitaevskii equations. The singular periodic wave solutions, dark soliton solutions and hyperbolic function solutions are reported. The solitary waves are observed from the traveling waves under the values of the parameters. Modulation instability analysis is also observed in various simulations. We also plot to observe the wave distributions of parameters of stability in 2D and 3D visuals via package program.


Author(s):  
Bo-wen Li ◽  
Tao Xu ◽  
Tian-Li Zhang ◽  
Li-cong An ◽  
Yang Chen

In this paper, we obtain the stationary elliptic- and hyperbolic-function solutions of the nonlocal reverse-time and reverse-space-time nonlinear Schrödinger (NLS) equations based on their connection with the standard Weierstrass elliptic equation. The reverse-time NLS equation possesses the bounded dn-, cn-, sn-, sech-, and tanh-function solutions. Of special interest, the tanh-function solution can display both the dark- and antidark-soliton profiles. The reverse-space-time NLS equation admits the general Jacobian elliptic-function solutions (which are exponentially growing at one infinity or display the periodical oscillation in x), the bounded dn- and cn-function solutions, as well as the K-shifted dn- and sn-function solutions. At the degeneration, the hyperbolic-function solutions may exhibit an exponential growth behavior at one infinity, or show the gray- and bright-soliton profiles.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sami Injrou ◽  
Ramez Karroum ◽  
Nadia Deeb

In this paper, the subequation method and the sine-cosine method are improved to give a set of traveling wave solutions for the time-fractional generalized Fitzhugh–Nagumo equation with time-dependent coefficients involving the conformable fractional derivative. Various structures of solutions such as the hyperbolic function solutions, the trigonometric function solutions, and the rational solutions are constructed. These solutions may be useful to describe several physical applications. The results show that these methods are shown to be affective and easy to apply for this type of nonlinear fractional partial differential equations (NFPDEs) with time-dependent coefficients.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 871-880
Author(s):  
Bo Tang ◽  
Jiajia Tao ◽  
Shijun Chen ◽  
Junfeng Qu ◽  
Qian Wang ◽  
...  

Abstract In the present study, we deal with the space–time fractional KdV–MKdV equation and the space–time fractional Konopelchenko–Dubrovsky equation in the sense of the conformable fractional derivative. By means of the extend \left(\tfrac{G^{\prime} }{G}\right) -expansion method, many exact solutions are obtained, which include hyperbolic function solutions, trigonometric function solutions and rational solutions. The results show that the extend \left(\tfrac{G^{\prime} }{G}\right) -expansion method is an efficient technique for solving nonlinear fractional partial equations. We also provide some graphical representations to demonstrate the physical features of the obtained solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhao Li ◽  
Tianyong Han

AbstractIn this paper, the bifurcation and new exact solutions for the ($2+1$ 2 + 1 )-dimensional conformable time-fractional Zoomeron equation are investigated by utilizing two reliable methods, which are generalized $(G'/G)$ ( G ′ / G ) -expansion method and the integral bifurcation method. The exact solutions of the ($2+1$ 2 + 1 )-dimensional conformable time-fractional Zoomeron equation are obtained by utilizing the generalized $(G'/G)$ ( G ′ / G ) -expansion method, these solutions are classified as hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Giving different parameter conditions, many integral bifurcations, phase portraits, and traveling wave solutions for the equation are obtained via the integral bifurcation method. Graphical representations of different kinds of the exact solutions reveal that the two methods are of significance for constructing the exact solutions of fractional partial differential equation.


2019 ◽  
Vol 35 (01) ◽  
pp. 1950339
Author(s):  
Zhenli Wang ◽  
Chuan Zhong Li ◽  
Lihua Zhang

In this paper, by applying the direct symmetry method, we obtain the symmetry reductions, group invariant solutions and some new exact solutions of the Bogoyavlenskii equation, which include hyperbolic function solutions, trigonometric function solutions and power series solutions. We also give the conservation laws of the Bogoyavlenskii equation.


2019 ◽  
Vol 4 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut ◽  
Tukur Abdulkadir Sulaiman

AbstractIn this paper, a powerful sine-Gordon expansion method (SGEM) with aid of a computational program is used in constructing a new hyperbolic function solutions to one of the popular nonlinear evolution equations that arises in the field of mathematical physics, namely; longren-wave equation. We also give the 3D and 2D graphics of all the obtained solutions which are explaining new properties of model considered in this paper. Finally, we submit a comprehensive conclusion at the end of this paper.


2019 ◽  
Vol 33 (11) ◽  
pp. 1950098 ◽  
Author(s):  
Solomon Manukure ◽  
Abhinandan Chowdhury ◽  
Yuan Zhou

We present new complexiton solutions to the (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov (aNNV) equation by application of the Hirota direct method and the linear superposition principle. We first find hyperbolic function solutions to the corresponding bilinear equation and consequently derive the so-called complexitons. In particular, we construct nonsingular complexiton solutions from positive complexiton solutions of the bilinear form of the nonlinear equation. Finally, we give some illustrative examples and a few concluding remarks.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


Sign in / Sign up

Export Citation Format

Share Document