scholarly journals Measurements of Soil Carbon Dioxide Emissions from Two Maize Agroecosystems at Harvest under Different Tillage Conditions

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Gerosa Giacomo ◽  
Finco Angelo ◽  
Boschetti Fabio ◽  
Brenna Stefano ◽  
Marzuoli Riccardo

In this study a comparison of the soil CO2fluxes emitted from two maize (Zea maysL.) fields with the same soil type was performed. Each field was treated with a different tillage technique: conventional tillage (30 cm depth ploughing) and no-tillage. Measurements were performed in the Po Valley (Italy) from September to October 2012, covering both pre- and postharvesting conditions, by means of two identical systems based on automatic static soil chambers. Main results show that no-tillage technique caused higher CO2emissions than conventional tillage (on average 2.78 and 0.79 μmol CO2 m−2 s−1, resp.). This result is likely due to decomposition of the organic litter left on the ground of the no-tillage site and thus to an increased microbial and invertebrate respiration. On the other hand, fuel consumption of conventional tillage technique is greater than no-tillage consumptions. For these reasons this result cannot be taken as general. More investigations are needed to take into account all the emissions related to the field management cycle.

2021 ◽  
Author(s):  
Safwan Mohammed ◽  
Morad Mirzaei ◽  
Ágnes Pappné Törő ◽  
Manouchehr Gorji Anari ◽  
Ebrahim Moghiseh ◽  
...  

Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 571-577 ◽  
Author(s):  
Lynn M. Kitchen ◽  
William W. Witt ◽  
Charles E. Rieck

The effect of glyphosate [N-(phosphonomethyl) glycine] on barley (Hordeum vulgareL.) and corn (Zea maysL.) shoot δ-aminolevulinic acid (ALA) production was examined by monitoring ALA content in the tissue and measuring incorporation of14C precursors into ALA and chlorophylla. Barley shoot ALA content was significantly decreased by 1 mM glyphosate after 9, 11, and 15 h of illumination. ALA production by treated barley shoots was 30 nmoles•g fresh weight-1•h-1at each interval tested, compared with 75 to 120 nmoles•g fresh weight-1•h-1for the control. In corn shoots, ALA content was reduced 32, 45, and 58% by 0.1, 1.0, and 10.0 mM glyphosate, respectively, after 12 h illumination. Incorporation studies with14C-glutamate,14C-α-ketoglutarate, and14C-glycine into ALA showed a 77, 92, and 91% inhibition, respectively, in barley shoots treated with 1 mM glyphosate. Incorporation of14C-ALA into chlorophyllawas not affected by 1 mM glyphosate. Thus, the site of action of glyphosate may involve two enzyme pathways:one controlling the conversion of α-ketoglutarate to ALA, and the other controlling the condensation of glycine with succinyl CoA to form ALA and carbon dioxide. Inhibition of ALA synthesis blocks synthesis of chlorophyll, as well as all other porphyrin ring compounds found in higher plants. Thus, inhibition of ALA synthesis may be an integral component of the herbicidal mode of action of glyphosate.


Weed Science ◽  
1980 ◽  
Vol 28 (6) ◽  
pp. 719-722 ◽  
Author(s):  
J. J. Kells ◽  
R. L. Blevins ◽  
C. E. Rieck ◽  
W. M. Muir

Field studies were conducted to determine the effect of soil surface (upper 5 cm) pH and tillage on weed control and corn (Zea maysL.) yield using simazine [2-chloro-4,6-bis-(ethylamino)-s-triazine] as the herbicide for weed control. Soil pH, weed control, and corn yield were examined under no-tillage and conventional tillage systems with and without added lime and different rates of nitrogen. Increased soil pH significantly increased weed control as compared with added lime vs. no added lime, where the surface soil pH influenced the effectiveness of the applied simazine. Soil pH had a greater effect on weed control under no-tillage than under conventional tillage. Conventional tillage significantly (P<.01) increased weed control, yield, and soil pH over no-tillage. Additions of lime as compared to unlimed treatments resulted in significantly increased weed control (83% vs. 63%), yield (5,930 vs. 5,290 kg/ha) and soil pH (5.91 vs. 5.22). The poorest weed control was observed with no-tillage on unlimed plots. A significant tillage by linear effect of nitrogen interaction for all variables resulted from a greater decrease (P<.01) in weed control and soil pH and a greater increase in yield with increased nitrogen under no-tillage than with conventional tillage.


2015 ◽  
Vol 10 (6) ◽  
pp. 450-457 ◽  
Author(s):  
Pivotto Bortolotto Rafael ◽  
Jorge Carneiro Amado Telmo ◽  
Dalla Nora Douglas ◽  
Keller Cristiano ◽  
Roberti Debora ◽  
...  

2009 ◽  
Vol 4 (3) ◽  
pp. 69 ◽  
Author(s):  
Adriano Marocco ◽  
Vincenzo Tabaglio ◽  
Amedeo Pietri ◽  
Carolina Gavazzi

2015 ◽  
Vol 96 ◽  
pp. 288-295 ◽  
Author(s):  
Jun Wang ◽  
Quan-Quan Liu ◽  
Rong-Rong Chen ◽  
Wen-Zhao Liu ◽  
Upendra M. Sainju

Sign in / Sign up

Export Citation Format

Share Document