scholarly journals An Improved Finite-Time Stability and Stabilization of Linear System with Constant Delay

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Thaned Rojsiraphisal ◽  
Jirapong Puangmalai

Practical systems in engineering fields often require that values of state variables, during the finite-time interval, must not exceed a certain value when the initial values of state are given. This leads us to investigate the finite-time stability and stabilization of a linear system with a constant time-delay. Sufficient conditions to guarantee the finite-time stability and stabilization are derived by using a new form of Lyapunov-Krasovskii functional and a desired state-feedback controller. These conditions are in the form of LMIs and inequalities. Two numerical examples are given to show the effectiveness of the proposed criteria. Results show that our proposed criteria are less conservative than previous works in terms of versatility of minimum bounds and larger bounds of time-delay.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wenhua Gao ◽  
Feiqi Deng ◽  
Ruiqiu Zhang ◽  
Wenhui Liu

This paper studies the problem of finite-timeH∞control for time-delayed Itô stochastic systems with Markovian switching. By using the appropriate Lyapunov-Krasovskii functional and free-weighting matrix techniques, some sufficient conditions of finite-time stability for time-delayed stochastic systems with Markovian switching are proposed. Based on constructing new Lyapunov-Krasovskii functional, the mode-dependent state feedback controller for the finite-timeH∞control is obtained. Simulation results illustrate the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Pan Tinglong ◽  
Yang Kun ◽  
Shen Yanxia ◽  
Gao Zairui ◽  
Ji Zhicheng

Finite-time stability has more practical application values than the classical Lyapunov asymptotic stability over a fixed finite-time interval. The problems of finite-time stability and finite-time boundedness for a class of continuous switched descriptor systems are considered in this paper. Based on the average dwell time approach and the multiple Lyapunov functions technique, the concepts of finite-time stability and boundedness are extended to continuous switched descriptor systems. In addition, sufficient conditions for the existence of state feedback controllers in terms of linear matrix inequalities (LMIs) are obtained with arbitrary switching rules, which guarantee that the switched descriptor system is finite-time stable and finite-time bounded, respectively. Finally, two numerical examples are presented to illustrate the reasonableness and effectiveness of the proposed results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
G. Arthi ◽  
N. Brindha ◽  
Yong-Ki Ma

AbstractThis work is mainly concentrated on finite-time stability of multiterm fractional system for $0 < \alpha _{2} \leq 1 < \alpha _{1} \leq 2$ 0 < α 2 ≤ 1 < α 1 ≤ 2 with multistate time delay. Considering the Caputo derivative and generalized Gronwall inequality, we formulate the novel sufficient conditions such that the multiterm nonlinear fractional system is finite time stable. Further, we extend the result of stability in the finite range of time to the multiterm fractional integro-differential system with multistate time delay for the same order by obtaining some inequality using the Gronwall approach. Finally, from the examples, the advantage of presented scheme can guarantee the stability in the finite range of time of considered systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Zheng ◽  
Jinde Cao

This paper investigates finite-time synchronization of the singular hybrid coupled networks. The singular systems studied in this paper are assumed to be regular and impulse-free. Some sufficient conditions are derived to ensure finite-time synchronization of the singular hybrid coupled networks under a state feedback controller by using finite-time stability theory. A numerical example is finally exploited to show the effectiveness of the obtained results.


2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Sreten B. Stojanovic ◽  
Dragutin Lj. Debeljkovic ◽  
Dragan S. Antic

Sign in / Sign up

Export Citation Format

Share Document