scholarly journals Ground-Level Geriatric Falls: A Not-So-Minor Mechanism of Injury

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Simon Parker ◽  
Arash Afsharpad

Introduction. Ground-level falls are typically regarded as a minor mechanism of injury that do not necessitate trauma team activation; however, they represent a significant proportion of hospitalised trauma and can result in multisystem injury.Case Presentation. A 79-year-old nursing home resident was brought to the emergency department following an unwitnessed fall. She suffered dementia and had a seizure in the department resulting in a reduced GCS, making history and examination difficult. She was diagnosed with a right proximal humerus fracture and admitted under joint orthopedic and medical care. Following orthopedic review, further X-rays were requested which showed bilateral neck of femur fractures. The following day she had bilateral hip hemiarthroplasties and K-wire stabilisation of the right shoulder. Several days later, when cognition had improved, she was noted to be avoiding use of the left arm and was found to also have a left proximal humerus fracture which was managed conservatively.Conclusion. Trauma patients with reduced cognitive function should undergo full ATLS assessment, and a prospective trial is required to see if age should be incorporated as a criteria for trauma team activation. More liberal use of advanced imaging such as a full body CT-scan may be beneficial.

2021 ◽  
Vol 5 (2) ◽  
pp. 205-211
Author(s):  
Eric B. Wilkinson ◽  
Johnathan F. Williams ◽  
Kyle D. Paul ◽  
Jun Kit He ◽  
Justin R. Hutto ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 215145932199274
Author(s):  
Hyojune Kim ◽  
Myung Jin Shin ◽  
Erica Kholinne ◽  
Janghyeon Seo ◽  
Duckwoo Ahn ◽  
...  

Purpose: This biomechanical study investigates the optimal number of proximal screws for stable fixation of a 2-part proximal humerus fracture model with a locking plate. Methods: Twenty-four proximal humerus fracture models were included in the study. An unstable 2-part fracture was created and fixed by a locking plate. Cyclic loading and load-to-failure tests were used for the following 4 groups based on the number of screws used: 4-screw, 6-screw, 7-screw, and 9-screw groups. Interfragmentary gaps were measured following cyclic loading and compared. Consequently, the load to failure, maximum displacement, stiffness, and mode of failure at failure point were compared. Results: The interfragmentary gaps for the 4-screw, 6-screw, 7-screw, and 9-screw groups were significantly reduced by 0.24 ± 0.09 mm, 0.08 ± 0.06 mm, 0.05 ± 0.01 mm, and 0.03 ± 0.01 mm following 1000 cyclic loading, respectively. The loads to failure were significantly different between the groups with the 7-screw group showing the highest load to failure. The stiffness of the 7-screw group was superior compared with the 6-screw, 9-screw, and 4-screw groups. The maximum displacement before failure showed a significant difference between the comparative groups with the 4-screw group having the lowest value. The 7-screw group had the least structural failure rate (33.3%). Conclusion: At least 7 screws would be optimal for proximal fragment fixation of proximal humerus fractures with medial comminution to minimize secondary varus collapse or fixation failure. Level of Evidence: Basic science study.


Sign in / Sign up

Export Citation Format

Share Document