scholarly journals A Study on the Adhesion of Styrene-Butadiene Rubber with Red Kaolinite on Aluminum Surface

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
I. M. Alwaan

The shear stress, strain, and modulus of styrene-butadiene rubber adhesive with and without kaolinite additive were studied on the aluminum surfaces to know the convenience of it in aluminum industries. The adhesives were cured at temperature of 200°C for different curing times (10, 30, 40, and 50 min) with and without 50 wt% kaolinite additives. The result found was good adhesion for styrene butadiene rubber adhesive without kaolinite additive and very poor adhesion with kaolinite additive. It was found that the maximum shear stress of adhesive without kaolinite additive was 2.3 kN/m2 with elongation of 0.23% and modulus of 100 kN/m2 at curing temperature of 200°C for period of time of 40 min. From images of adhesives after breaking of samples, the adhesive without additives failed because both adhesion and the cohesive energies of adhesive were failure; meanwhile, the failure of adhesive with kaolinite additive was due to failure in cohesive energy only.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3022
Author(s):  
Seongdo Kim ◽  
Hyun-Oh Shin ◽  
Doo-Yeol Yoo

This study evaluates the tensile properties, including the tensile strength and elongation at break, and dynamic behavior, including shock absorption and vertical deformation, of an elastic rubber layer in synthetic sports surfaces produced using waste tire chips containing styrene-butadiene rubber (SBR). The primary variables of the investigation were the number of compactions, resin–rubber granule ratio, and curing conditions, such as aging, the temperature, and the relative humidity. The test results showed an increase in the tensile strength of the elastic rubber layer with recycled SBR as the number of compactions, resin–rubber granule ratio, curing period, and temperature increased, while the elongation at break was affected by the curing temperature and period. Shock absorption and vertical deformation decreased with an increasing resin–rubber granule ratio and number of compactions due to the increased hardness. However, these properties were not significantly affected by the curing conditions. Furthermore, the test results indicated that the curing temperature has a pronounced effect on the tensile properties of the elastic rubber layer, and maintaining the appropriate curing temperature—approximately 50 °C—is a possible solution for improving the relatively low tensile properties of the elastic rubber layer.


2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

Sign in / Sign up

Export Citation Format

Share Document