scholarly journals Nonlinear-Model-Based Analysis Methods for Time-Course Gene Expression Data

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Li-Ping Tian ◽  
Li-Zhi Liu ◽  
Fang-Xiang Wu

Microarray technology has produced a huge body of time-course gene expression data and will continue to produce more. Such gene expression data has been proved useful in genomic disease diagnosis and drug design. The challenge is how to uncover useful information from such data by proper analysis methods such as significance analysis and clustering analysis. Many statistic-based significance analysis methods and distance/correlation-based clustering analysis methods have been applied to time-course expression data. However, these techniques are unable to account for the dynamics of such data. It is the dynamics that characterizes such data and that should be considered in analysis of such data. In this paper, we employ a nonlinear model to analyse time-course gene expression data. We firstly develop an efficient method for estimating the parameters in the nonlinear model. Then we utilize this model to perform the significance analysis of individually differentially expressed genes and clustering analysis of a set of gene expression profiles. The verification with two synthetic datasets shows that our developed significance analysis method and cluster analysis method outperform some existing methods. The application to one real-life biological dataset illustrates that the analysis results of our developed methods are in agreement with the existing results.

2005 ◽  
Vol 03 (04) ◽  
pp. 821-836 ◽  
Author(s):  
FANG-XIANG WU ◽  
W. J. ZHANG ◽  
ANTHONY J. KUSALIK

Microarray technology has produced a huge body of time-course gene expression data. Such gene expression data has proved useful in genomic disease diagnosis and genomic drug design. The challenge is how to uncover useful information in such data. Cluster analysis has played an important role in analyzing gene expression data. Many distance/correlation- and static model-based clustering techniques have been applied to time-course expression data. However, these techniques are unable to account for the dynamics of such data. It is the dynamics that characterize the data and that should be considered in cluster analysis so as to obtain high quality clustering. This paper proposes a dynamic model-based clustering method for time-course gene expression data. The proposed method regards a time-course gene expression dataset as a set of time series, generated by a number of stochastic processes. Each stochastic process defines a cluster and is described by an autoregressive model. A relocation-iteration algorithm is proposed to identity the model parameters and posterior probabilities are employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. Computational experiments are performed on a synthetic and three real time-course gene expression datasets to investigate the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g. k-means) for time-course gene expression data, and thus it is a useful and powerful tool for analyzing time-course gene expression data.


2007 ◽  
Vol 8 (1) ◽  
Author(s):  
Miika Ahdesmäki ◽  
Harri Lähdesmäki ◽  
Andrew Gracey ◽  
llya Shmulevich ◽  
Olli Yli-Harja

1999 ◽  
Author(s):  
Yidong Chen ◽  
Olga Ermolaeva ◽  
Michael L. Bittner ◽  
Paul S. Meltzer ◽  
Jeffrey M. Trent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document