scholarly journals New Stabilization for Dynamical System with Two Additive Time-Varying Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lianglin Xiong ◽  
Fan Yang ◽  
Xiaozhou Chen

This paper provides a new delay-dependent stabilization criterion for systems with two additive time-varying delays. The novel functional is constructed, a tighter upper bound of the derivative of the Lyapunov functional is obtained. These results have advantages over some existing ones because the combination of the delay decomposition technique and the reciprocally convex approach. Two examples are provided to demonstrate the less conservatism and effectiveness of the results in this paper.

2014 ◽  
Vol 610 ◽  
pp. 523-533
Author(s):  
Liang Lin Xiong ◽  
Di Li ◽  
Yan Fang Zuo

This paper provides a new delay-dependent stabilization criterion for systems with two additive time-varying delays. The novel functional is constructed, a tighter upper bound of the derivative of the Lyapunov functional is obtained. These results have advantages over some existing ones in that the skillfully combination of the delay decomposition and reciprocally convex approach. Two examples are provided to demonstrate the less conservatism and effectiveness of the results in this paper.


Author(s):  
Venkatesh Modala ◽  
Sourav Patra ◽  
Goshaidas Ray

Abstract This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov-Krasovskii (LK) functional to derive a delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus, ensure global asymptotic stability in presence of any time delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.


2017 ◽  
Vol 24 (20) ◽  
pp. 4921-4930 ◽  
Author(s):  
Nasrollah Azam Baleghi ◽  
Mohammad Hossein Shafiei

This paper studies the delay-dependent stability conditions for time-delay discrete-time switched systems. In the considered switched system, there are uncertain terms in each subsystem due to affine parametric uncertainties. Additionally, each subsystem has a time-varying state delay which adds more complexity to the stability analysis. Based on the Lyapunov functional approach, the sufficient conditions are extracted to determine the admissible upper bound of the time-varying delay for guaranteed stability. Furthermore, a class of switching signals is identified to guarantee the exponential stability of the uncertain time-delay switched system. The main advantage of the suggested switching signals is its independency to the uncertainties. Furthermore, these signals are only constrained by a determined average dwell time (may be chosen arbitrarily). Finally, a numerical example is provided to demonstrate the efficiency of the proposed method and also the reduction of conservatism in finding the admissible upper bound of time-delay in comparison with other stability analysis approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Qian ◽  
Hamid Reza Karimi

This paper addresses the delay-dependent stability for systems with time-varying delay. First, by taking multi-integral terms into consideration, new Lyapunov-Krasovskii functional is defined. Second, in order to reduce the computational complexity of the main results, reciprocally convex approach and some special transformations are introduced, and new delay-dependent stability criteria are proposed, which are less conservative and have less decision variables than some previous results. Finally, two well-known examples are given to illustrate the correctness and advantage of our theoretical results.


Author(s):  
Pin-Lin Liu

The problem of absolute stability for a class of neutral-type Lurie control system with nonlinearity located in an infinite sector and in a finite one is investigated in this paper. Based on the delayed-decomposition approach (DDA), a new augmented Lyapunov functional is constructed and the delay dependent conditions for asymptotic stability are derived by applying an integral inequality approach (IIA) in terms of linear matrix inequalities (LMIs). Finally, numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.


Sign in / Sign up

Export Citation Format

Share Document