summation inequality
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Venkatesh Modala ◽  
Sourav Patra ◽  
Goshaidas Ray

Abstract This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov-Krasovskii (LK) functional to derive a delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus, ensure global asymptotic stability in presence of any time delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Dongdong Wang ◽  
Shengzhi Han ◽  
Jian Chen

The problems of the admissibility and state feedback stabilization for discrete-time singular systems with interval time-varying delay and norm-bounded uncertainty are studied. The system is equivalently transformed into a new comparison form by decomposition. By taking advantage of the Seuret summation inequality, the reciprocally convex inequality, and some relaxation techniques, a delay-dependent criterion that ensures the admissibility of the concerned systems is established. The result on robust stabilization is also obtained by fixing some parameters. It should be pointed out that the results are less dependent on the parameters so that some conservatism is reduced. A numerical example is included to illustrate the effectiveness and improvement of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document