scholarly journals Higher Order Mean Squared Error of Generalized Method of Moments Estimators for Nonlinear Models

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Hu ◽  
Xiaohua Xia ◽  
Ying Deng ◽  
Dongmei Guo

Generalized method of moments (GMM) has been widely applied for estimation of nonlinear models in economics and finance. Although generalized method of moments has good asymptotic properties under fairly moderate regularity conditions, its finite sample performance is not very well. In order to improve the finite sample performance of generalized method of moments estimators, this paper studies higher-order mean squared error of two-step efficient generalized method of moments estimators for nonlinear models. Specially, we consider a general nonlinear regression model with endogeneity and derive the higher-order asymptotic mean square error for two-step efficient generalized method of moments estimator for this model using iterative techniques and higher-order asymptotic theories. Our theoretical results allow the number of moments to grow with sample size, and are suitable for general moment restriction models, which contains conditional moment restriction models as special cases. The higher-order mean square error can be used to compare different estimators and to construct the selection criteria for improving estimator’s finite sample performance.

2014 ◽  
Vol 31 (5) ◽  
pp. 1054-1077 ◽  
Author(s):  
Daniel Wilhelm

A two-step generalized method of moments estimation procedure can be made robust to heteroskedasticity and autocorrelation in the data by using a nonparametric estimator of the optimal weighting matrix. This paper addresses the issue of choosing the corresponding smoothing parameter (or bandwidth) so that the resulting point estimate is optimal in a certain sense. We derive an asymptotically optimal bandwidth that minimizes a higher-order approximation to the asymptotic mean-squared error of the estimator of interest. We show that the optimal bandwidth is of the same order as the one minimizing the mean-squared error of the nonparametric plugin estimator, but the constants of proportionality are significantly different. Finally, we develop a data-driven bandwidth selection rule and show, in a simulation experiment, that it may substantially reduce the estimator’s mean-squared error relative to existing bandwidth choices, especially when the number of moment conditions is large.


2009 ◽  
Vol 25 (1) ◽  
pp. 291-297 ◽  
Author(s):  
Yong Bao

We study the finite-sample bias and mean squared error, when properly defined, of the sample coefficient of variation under a general distribution. We employ a Nagar-type expansion and use moments of quadratic forms to derive the results. We find that the approximate bias depends on not only the skewness but also the kurtosis of the distribution, whereas the approximate mean squared error depends on the cumulants up to order 6.


1996 ◽  
Vol 12 (3) ◽  
pp. 432-457 ◽  
Author(s):  
Eric Ghysels ◽  
Offer Lieberman

It is common for an applied researcher to use filtered data, like seasonally adjusted series, for instance, to estimate the parameters of a dynamic regression model. In this paper, we study the effect of (linear) filters on the distribution of parameters of a dynamic regression model with a lagged dependent variable and a set of exogenous regressors. So far, only asymptotic results are available. Our main interest is to investigate the effect of filtering on the small sample bias and mean squared error. In general, these results entail a numerical integration of derivatives of the joint moment generating function of two quadratic forms in normal variables. The computation of these integrals is quite involved. However, we take advantage of the Laplace approximations to the bias and mean squared error, which substantially reduce the computational burden, as they yield relatively simple analytic expressions. We obtain analytic formulae for approximating the effect of filtering on the finite sample bias and mean squared error. We evaluate the adequacy of the approximations by comparison with Monte Carlo simulations, using the Census X-11 filter as a specific example


Sign in / Sign up

Export Citation Format

Share Document