scholarly journals Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
F. Ruffino ◽  
G. Piccitto ◽  
M. G. Grimaldi

Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nanostructures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag2O, Al/Al2O2, Cu/Cu2O, Pd/PdO, and Ti/TiO2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2364
Author(s):  
Zhiyuan He ◽  
Chi Zhang ◽  
Rangwei Meng ◽  
Xuanhui Luo ◽  
Mengwei Chen ◽  
...  

In this paper, Ag@SiO2 core-shell nanoparticles (NPs) with different shell thicknesses were prepared experimentally and introduced into the photosensitive layer of mesoscopic hole-conductor-free perovskite solar cells (PSCs) based on carbon counter electrodes. By combining simulation and experiments, the influences of different shell thickness Ag@SiO2 core-shell nanoparticles on the photoelectric properties of the PSCs were studied. The results show that, when the shell thickness of 0.1 wt% Ag@SiO2 core-shell nanoparticles is 5 nm, power conversion efficiency is improved from 13.13% to 15.25%, achieving a 16% enhancement. Through the measurement of the relevant parameters of the obtained perovskite film, we found that this gain not only comes from the increase in current density that scholars generally think, but also comes from the improvement of the film quality. Like current gain, this gain is related to the different shell thickness of Ag@SiO2 core-shell nanoparticles. Our research provides a new direction for studying the influence mechanism of Ag@SiO2 core-shell nanoparticles in perovskite solar cells.


2018 ◽  
Vol 239 ◽  
pp. 22-28 ◽  
Author(s):  
Kekeli N'Konou ◽  
Malika Chalh ◽  
Virginie Monnier ◽  
Nicholas P. Blanchard ◽  
Yann Chevolot ◽  
...  

2020 ◽  
Vol 240 ◽  
pp. 122144 ◽  
Author(s):  
Zhiyang Li ◽  
Bridgid Wanjala ◽  
George Cernigliaro ◽  
Dan Nawrocki ◽  
Zhiyong Gu

RSC Advances ◽  
2015 ◽  
Vol 5 (30) ◽  
pp. 23563-23568 ◽  
Author(s):  
Smita Chaturvedi ◽  
Raja Das ◽  
Pankaj Poddar ◽  
Sulabha Kulkarni

We report a tunable band gap of bismuth ferrite–polyaniline core–shell nanoparticles from 2.24 to 1.98 eV and the variation of coercivity from 118 to 100 Oe, by varying the thickness of the polyaniline shell.


Sign in / Sign up

Export Citation Format

Share Document