scholarly journals Extremal Inverse Eigenvalue Problem for a Special Kind of Matrices

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhibing Liu ◽  
Yeying Xu ◽  
Kanmin Wang ◽  
Chengfeng Xu

We consider the following inverse eigenvalue problem: to construct a special kind of matrix (real symmetric doubly arrow matrix) from the minimal and maximal eigenvalues of all its leading principal submatrices. The necessary and sufficient condition for the solvability of the problem is derived. Our results are constructive and they generate algorithmic procedures to construct such matrices.

2013 ◽  
Vol 444-445 ◽  
pp. 625-627
Author(s):  
Kan Ming Wang ◽  
Zhi Bing Liu ◽  
Xu Yun Fei

In this paper we present a special kind of real symmetric matrices: the real symmetric doubly arrow matrices. That is, matrices which look like two arrow matrices, forward and backward, with heads against each other at the station, . We study a kind of inverse eigenvalue problem and give a necessary and sufficient condition for the existence of such matrices.


2018 ◽  
Vol 6 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Debashish Sharma ◽  
Mausumi Sen

Abstract The reconstruction of a matrix having a pre-defined structure from given spectral data is known as an inverse eigenvalue problem (IEP). In this paper, we consider two IEPs involving the reconstruction of matrices whose graph is a special type of tree called a centipede. We introduce a special type of centipede called dense centipede.We study two IEPs concerning the reconstruction of matrices whose graph is a dense centipede from given partial eigen data. In order to solve these IEPs, a new system of nomenclature of dense centipedes is developed and a new scheme is adopted for labelling the vertices of a dense centipede as per this nomenclature . Using this scheme of labelling, any matrix of a dense centipede can be represented in a special form which we define as a connected arrow matrix. For such a matrix, we derive the recurrence relations among the characteristic polynomials of the leading principal submatrices and use them to solve the above problems. Some numerical results are also provided to illustrate the applicability of the solutions obtained in the paper.


2010 ◽  
Vol 60 (1) ◽  
Author(s):  
Kallol Paul

AbstractOne of the couple of translatable radii of an operator in the direction of another operator introduced in earlier work [PAUL, K.: Translatable radii of an operator in the direction of another operator, Scientae Mathematicae 2 (1999), 119–122] is studied in details. A necessary and sufficient condition for a unit vector f to be a stationary vector of the generalized eigenvalue problem Tf = λAf is obtained. Finally a theorem of Williams ([WILLIAMS, J. P.: Finite operators, Proc. Amer. Math. Soc. 26 (1970), 129–136]) is generalized to obtain a translatable radius of an operator in the direction of another operator.


2016 ◽  
Vol 6 (1) ◽  
pp. 42-59 ◽  
Author(s):  
Wei-Ru Xu ◽  
Guo-Liang Chen

AbstractGeneralised centrohermitian and skew-centrohermitian matrices arise in a variety of applications in different fields. Based on the vibrating structure equation where M, D, G, K are given matrices with appropriate sizes and x is a column vector, we design a new vibrating structure mode. This mode can be discretised as the left and right inverse eigenvalue problem of a certain structured matrix. When the structured matrix is generalised centrohermitian, we discuss its left and right inverse eigenvalue problem with a submatrix constraint, and then get necessary and sufficient conditions such that the problem is solvable. A general representation of the solutions is presented, and an analytical expression for the solution of the optimal approximation problem in the Frobenius norm is obtained. Finally, the corresponding algorithm to compute the unique optimal approximate solution is presented, and we provide an illustrative numerical example.


1990 ◽  
Vol 116 (1-2) ◽  
pp. 177-191
Author(s):  
M. Faierman

SynopsisWe consider a two-parameter system of ordinary differential equations of the second order involving complex potentials and show that, unlike the case of real potentials, the eigenfunctions of the system do not necessarily form a complete set in the usual Hilbert space associated with the problem. We also give a necessary and sufficient condition for the eigenfunctions to be complete. Finally, we establish some results concerning the eigenvalues of the system.


2019 ◽  
Vol 35 ◽  
pp. 53-64 ◽  
Author(s):  
Ricardo Soto ◽  
Ana Julio ◽  
Macarena Collao

The problem of the existence and construction of nonnegative matrices with prescribed eigenvalues and diagonal entries is an important inverse problem, interesting by itself, but also necessary to apply a perturbation result, which has played an important role in the study of certain nonnegative inverse spectral problems. A number of partial results about the problem have been published by several authors, mainly by H. \v{S}migoc. In this paper, the relevance of a Brauer's result, and its implication for the nonnegative inverse eigenvalue problem with prescribed diagonal entries is emphasized. As a consequence, given a list of complex numbers of \v{S}migoc type, or a list $\Lambda = \left\{\lambda _{1},\ldots ,\lambda _{n} \right \}$ with $\operatorname{Re}\lambda _{i}\leq 0,$ $\lambda _{1}\geq -\sum\limits_{i=2}^{n}\lambda _{i}$, and $\left\{-\sum\limits_{i=2}^{n}\lambda _{i},\lambda _{2},\ldots ,\lambda _{n} \right\}$ being realizable; and given a list of nonnegative real numbers $% \Gamma = \left\{\gamma _{1},\ldots ,\gamma _{n} \right\}$, the remarkably simple condition $\gamma _{1}+\cdots +\gamma _{n} = \lambda _{1}+\cdots +\lambda _{n}$ is necessary and sufficient for the existence and construction of a realizing matrix with diagonal entries $\Gamma .$ Conditions for more general lists of complex numbers are also given.


2019 ◽  
Vol 64 (3) ◽  
pp. 351-366 ◽  
Author(s):  
Mohammad Heydari ◽  
Seyed Abolfazl Shahzadeh Fazeli ◽  
Seyed Mehdi Karbassi

Sign in / Sign up

Export Citation Format

Share Document