scholarly journals Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ye Tian ◽  
Chen Lu ◽  
Zili Wang ◽  
Laifa Tao

An intelligent online prognostic approach is proposed for predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries based on artificial fish swarm algorithm (AFSA) and particle filter (PF), which is an integrated approach combining model-based method with data-driven method. The parameters, used in the empirical model which is based on the capacity fade trends of Li-ion batteries, are identified dependent on the tracking ability of PF. AFSA-PF aims to improve the performance of the basic PF. By driving the prior particles to the domain with high likelihood, AFSA-PF allows global optimization, prevents particle degeneracy, thereby improving particle distribution and increasing prediction accuracy and algorithm convergence. Data provided by NASA are used to verify this approach and compare it with basic PF and regularized PF. AFSA-PF is shown to be more accurate and precise.

Author(s):  
Shuai Wang ◽  
Wei Han ◽  
Lifei Chen ◽  
Xiaochen Zhang ◽  
Michael Pecht

A new data-driven prognostic method based on an interacting multiple model particle filter (IMMPF) is proposed for use in the determination of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries and the probability distribution function (PDF) of the uncertainty associated with the RUL. An IMMPF is applied to different state equations. The battery capacity degradation model is very important in the prediction of the RUL of Li-ion batteries. The IMMPF method is applied to the estimation of the RUL of Li-ion batteries using the three improved models. Three case studies are provided to validate the proposed method. The experimental results show that the one-dimensional state equation particle filter (PF) is more suitable for estimating the trend of battery capacity in the long term. The proposed method involving interacting multiple models demonstrated a stable and high prediction accuracy, as well as the capability to narrow the uncertainty in the PDF of the RUL prediction for Li-ion batteries.


Author(s):  
Zhimin Xi ◽  
Rong Jing ◽  
Cheol Lee

This paper investigates recent research on battery diagnostics and prognostics especially for Lithium-ion (Li-ion) batteries. Battery diagnostics focuses on battery models and diagnosis algorithms for battery state of charge (SOC) and state of health (SOH) estimation. Battery prognostics elaborates data-driven prognosis algorithms for predicting the remaining useful life (RUL) of battery SOC and SOH. Readers will learn not only basics but also very recent research developments on battery diagnostics and prognostics.


2018 ◽  
Vol 8 (11) ◽  
pp. 2078 ◽  
Author(s):  
Cunsong Wang ◽  
Ningyun Lu ◽  
Senlin Wang ◽  
Yuehua Cheng ◽  
Bin Jiang

On-line remaining-useful-life (RUL) prognosis is still a problem for satellite Lithium-ion (Li-ion) batteries. Meanwhile, capacity, widely used as a health indicator of a battery (HI), is inconvenient or even impossible to measure. Aiming at practical and precise prediction of the RUL of satellite Li-ion batteries, a dynamic long short-term memory (DLSTM) neural-network-based indirect RUL prognosis is proposed in this paper. Firstly, an indirect HI based on the Spearman correlation analysis method is extracted from the battery discharge voltages, and the relationship between the indirect HI indices and battery capacity is established using a polynomial fitting method. Then, by integrating the Adam method, L2 regularization method, and incremental learning, a DLSTM method is proposed and applied for Li-ion battery RUL prognosis. Finally, verification of the results on NASA #5 battery data sets demonstrates that the proposed method has better dynamic performance and higher accuracy than the three other popular methods.


2019 ◽  
Vol 6 (4) ◽  
pp. 43
Author(s):  
HADIR ADEBIYI BUSAYO ◽  
TIJANI SALAWUDEEN AHMED ◽  
FOLASHADE O. ADEBIYI RISIKAT ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document