scholarly journals Dynamic Time-Delay Characteristics and Structural Optimization Design of Marine Gas Turbine Intercooler

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ning-bo Zhao ◽  
Xue-you Wen ◽  
Shu-ying Li

Aiming at the rapid mobility of marine gas turbine and the dynamic time-delay problem of intercooler for intercooled cycle marine gas turbine, the dynamic simulation model of intercooler was set up based on effectiveness-number of transfer units (ε-NTU) and lumped parameter method in this paper. The model comprehensively considers related physical properties dependent on temperature. Dynamic response characteristics of gas outlet temperature and pressure and coolant outlet temperature of intercooler with different materials and coolants in the change of operation condition of marine gas turbine were analyzed in detail. Besides, this paper explored the use of simulated annealing algorithm for structural optimization of intercooler. The results showed that both material and coolant were the significant factors that affected the heat transfer and dynamic performance of intercooler. The heat transfer and dynamic performance of the intercooler obtained by using simulated annealing algorithm were better than those of preliminary design.

Author(s):  
Seifedine N. Kadry ◽  
Abdelkhalak El Hami

The present paper focus on the improvement of the efficiency of structural optimization, in typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for large scale global optimization problems with constraints is proposed. The authors have developed a stochastic algorithm called SAPSPSA that uses Simulated Annealing algorithm (SA). In addition, the Simultaneous Perturbation Stochastic Approximation method (SPSA) is used to refine the solution. Commonly, structural analysis problems are constrained. For the reason that SPSA method involves penalizing constraints a penalty method is used to design a new method, called Penalty SPSA (PSPSA) method. The combination of both methods (Simulated Annealing algorithm and Penalty Simultaneous Perturbation Stochastic Approximation algorithm) provides a powerful hybrid stochastic optimization method (SAPSPSA), the proposed method is applicable for any problem where the topology of the structure is not fixed. It is simple and capable of handling problems subject to any number of constraints which may not be necessarily linear. Numerical results demonstrate the applicability, accuracy and efficiency of the suggested method for structural optimization. It is found that the best results are obtained by SAPSPSA compared to the results provided by the commercial software ANSYS.


Sign in / Sign up

Export Citation Format

Share Document