quaternary alloy
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Author(s):  
A R Degheidy ◽  
A M AbuAli ◽  
Elkenany B Elkenany

Abstract The temperature dependence of acoustic velocities, thermal properties, and phonon frequencies, mechanical, electronic, and optical properties for the InPxAsySb1-x-y/InAs system has been studied. The physical properties of the binary components InSb, InP, and InAs that constitute the quaternary alloy were used in this research. The study has been done using the empirical pseudo-potential method (EPM) under the virtual crystal approximation (VCA). The thermal properties, phonon frequencies, and acoustic velocities for the InPxAsySb1-x-y/InAs system under the effect of temperature have not been fully studied. Therefore, we have focused on these properties under the influence of temperature. Due to the lack of the published theoretical and experimental values on these properties, our findings will provide a significant reference for future experimental work.


2022 ◽  
Vol 120 (1) ◽  
pp. 012104
Author(s):  
Ping Wang ◽  
Ding Wang ◽  
Yutong Bi ◽  
Boyu Wang ◽  
Jonathan Schwartz ◽  
...  

AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015307
Author(s):  
Tomoki Hotta ◽  
Kengo Takase ◽  
Kosuke Takiguchi ◽  
Karumuri Sriharsha ◽  
Le Duc Anh ◽  
...  

2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
P. Grima-Gallardo ◽  
M. Palmera ◽  
J. A. Aitken ◽  
J. Cisterna ◽  
I. Brito ◽  
...  

The quaternary alloy (CuIn)2NbTe5 was synthesized by solid-state reaction using the melt and annealing technique. The thermal analysis shows that this compound melts at 1026 K. The present alloy is isotypic with Cu2FeIn2Se5 and crystallizes in the space group P2c (Nº 112), with unit cell parameters a = 6.1964(2) Å, c = 12.4761(4) Å, c/a = 2.01, V = 479.02(3) Å3. (CuIn)2NbTe5, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, is a new adamantane compound with a P-chalcopyrite structure. This structure is characterized by a double alternation of anions-cations layers according to the Te-Te : Nb-In-Nb-In : Cu-In-Cu-In : Te-Te sequence, along the 010 direction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kiumars Aryana ◽  
Yifei Zhang ◽  
John A. Tomko ◽  
Md Shafkat Bin Hoque ◽  
Eric R. Hoglund ◽  
...  

AbstractIntegrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge2Sb2Se4Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge2Sb2Se4Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge2Sb2Se4Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge2Sb2Se4Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.


2021 ◽  
pp. 106797
Author(s):  
G. Villa-Martínez ◽  
D.M. Hurtado-Castañeda ◽  
Y.L. Casallas-Moreno ◽  
M. Ramírez-López ◽  
M.A. González-Morales ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1726
Author(s):  
Zhuorui Wang ◽  
Cong Cheng ◽  
Yongjuan Cheng ◽  
Lizhen Zheng ◽  
Daodao Hu

Traditionally, the acidity of paper-based relics was determined by an extraction method and using a pH meter. This method could not obtain the total acidity of the paper-based relics because it only detected the concentration of free protons in the aqueous soaking solution. To overcome this defect, a new method for determining the total acidity of paper-based relics has been established by using quaternary alloy quantum dots. The quantum dots, CdZnSeS, modified by p-Aminothiophenol (pATP) were prepared, and their composition and structure were characterized. The fluorescence behavior of prepared quantum dots with acidity was investigated. The following results were obtained. The fluorescence of CdZnSeS-pATP quantum dots could decrease with increases in acidity because pATP dissociated from the surfaces of the quantum dots due to protons or undissociated weak acids. Based on this feature, a method for determining the acidity of paper-based relics was constructed, and this method was used to evaluate the acidity of actual paper-based relics. Obviously, for a given paper sample, since both free protons and bound protons can be determined by this method, the acidity measured by this method is more reasonable than that by pH meter.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
pp. 041001
Author(s):  
K. Benchikh ◽  
M. Benchehima ◽  
H. A. Bid ◽  
A. Chabane Chaouche

In the present work, the density functional theory (DFT) was performed for the investigation of the structural, electronic and optical properties of the Zn1-xCdxSeyTe1-y quaternary alloys using the full potential linearized augmented plane wave (FP-LAPW) method. For the calculations of the structural properties we have used the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBEsol). On other hand, the electronic properties have been computed within the local density approximation (LDA) in adding to the Tran-Blaha modified Becker-Johnson (TB-mBJ) approach. Our results indicate that the lattice constant, as well as the bulk modulus and the energy gap for the Zn1-xCdxSeyTe1-y quaternary show almost linear variations on the concentration x (0.125≤x≤0.875). In addition, the simulated band structures for theZn1-xCdxSeyTe1-y quaternary exhibits a direct-gap for all concentrations. Moreover, low bowing parameters are observed. Also, some interesting optical properties such as dielectric constant, refractive index, extinction coefficient, absorption coefficient and reflectivity have been calculated by using the TB-mBJ method.  The results of our computations shows that theZn1-xCdxSeyTe1-y quaternary alloy is a promissing candidate for optoelectronic applications. It is noteworthy that the present work is the first theoretical study of the quaternary of interest using the FP-LAPW calculations.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2470
Author(s):  
Jorge Montero ◽  
Gustav Ek ◽  
Laetitia Laversenne ◽  
Vivian Nassif ◽  
Martin Sahlberg ◽  
...  

Al0.10Ti0.30V0.25Zr0.10Nb0.25 was prepared to evaluate the effect of 10% aluminum into the previously reported quaternary alloy, Ti0.325V0.275Zr0.125Nb0.275. The as-cast quinary alloy formed a single-phase body centered cubic solid solution and transformed into a body centered tetragonal after hydrogenation. The alloy had a storage capacity of 1.6 H/M (2.6 wt.%) with fast absorption kinetics at room temperature, reaching full capacity within the first 10 min. The major improvements of Al addition (10%) were related to the desorption and cycling properties of the material. The temperature for hydrogen release was significantly decreased by around 100 °C, and the quinary alloy showed superior cycling stability and higher reversible storage capacity than its quaternary counterpart, 94% and 85% of their respective initial capacity, after 20 hydrogenation cycles without phase decomposition.


Sign in / Sign up

Export Citation Format

Share Document