scholarly journals Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Birol İbiş ◽  
Mustafa Bayram

This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie’s modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs.

BIBECHANA ◽  
2017 ◽  
Vol 15 ◽  
pp. 37-42
Author(s):  
Jamshad Ahmad ◽  
Zobia Hamid

In this paper, application of variational iteration method has been successfully extended to obtain approximate solutions of some higher order boundary value problems. We emphasize the power of the method by testing three different mathematical models of distinct orders. The results are obtained by using only little iteration.  BIBECHANA 15 (2018) 37-42


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Abdelouahab Kadem ◽  
Adem Kilicman

Variational iteration method and homotopy perturbation method are used to solve the fractional Fredholm integrodifferential equations with constant coefficients. The obtained results indicate that the method is efficient and also accurate.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 328-336 ◽  
Author(s):  
Bo Tang ◽  
Yingzhe Fan ◽  
Jianping Zhao ◽  
Xuemin Wang

AbstractIn this paper, based on Jumarie’s modified Riemann-Liouville derivative, we apply the fractional variational iteration method using He’s polynomials to obtain solitary and compacton solutions of fractional KdV-like equations. The results show that the proposed method provides a very effective and reliable tool for solving fractional KdV-like equations, and the method can also be extended to many other fractional partial differential equations.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Asghar Ghorbani ◽  
Abdolsaeed Alavi

He's variational iteration method is applied to solve th order semidifferential equations. Comparison is made between collocation spline method based on Lagrange interpolation and the present method. In this method, the solution is calculated in the form of a convergent series with an easily computable component. This approach does not need linearization, weak nonlinearity assumptions, or perturbation theory. Some examples are given to illustrate the effectiveness of the method; the results show that He's method provides a straightforward and powerful mathematical tool for solving various semidifferential equations of the th order.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Lijuan ◽  
Tian Lixin ◽  
Ma Kaiping

We introduce the variational iteration method for solving the generalized Degasperis-Procesi equation. Firstly, according to the variational iteration, the Lagrange multiplier is found after making the correction functional. Furthermore, several approximations ofun+1(x,t)which is converged tou(x,t)are obtained, and the exact solutions of Degasperis-Procesi equation will be obtained by using the traditional variational iteration method with a suitable initial approximationu0(x,t). Finally, after giving the perturbation item, the approximate solution for original equation will be expressed specifically.


Sign in / Sign up

Export Citation Format

Share Document