scholarly journals Variational Iteration Method for Solving the Generalized Degasperis-Procesi Equation

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Lijuan ◽  
Tian Lixin ◽  
Ma Kaiping

We introduce the variational iteration method for solving the generalized Degasperis-Procesi equation. Firstly, according to the variational iteration, the Lagrange multiplier is found after making the correction functional. Furthermore, several approximations ofun+1(x,t)which is converged tou(x,t)are obtained, and the exact solutions of Degasperis-Procesi equation will be obtained by using the traditional variational iteration method with a suitable initial approximationu0(x,t). Finally, after giving the perturbation item, the approximate solution for original equation will be expressed specifically.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Abdelouahab Kadem ◽  
Adem Kilicman

Variational iteration method and homotopy perturbation method are used to solve the fractional Fredholm integrodifferential equations with constant coefficients. The obtained results indicate that the method is efficient and also accurate.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 439-444 ◽  
Author(s):  
Said Abbasbandy ◽  
Elyas Shivanian

AbstractIn this paper, the variational iteration method is proposed to solve Fredholm’s nth-order integrodifferential equations. The initial approximation is selected wisely which satisfies the initial conditions. The results reveal that this method is very effective and convenient in comparison with other methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Konuralp ◽  
H. Hilmi Sorkun

Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay functionθ(t)vanishes inside the integral limits such thatθ(t)=qtfor0<q<1,t≥0. Either the approximate solutions that are converging to the exact solutions or the exact solutions of three test problems are obtained by using this presented process. The numerical solutions and the absolute errors are shown in figures and tables.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Guo-Cheng Wu

Recently, Liu extended He's variational iteration method to strongly nonlinearq-difference equations. In this study, the iteration formula and the Lagrange multiplier are given in a more accurate way. Theq-oscillation equation of second order is approximately solved to show the new Lagrange multiplier's validness.


2021 ◽  
Vol 24 (4) ◽  
pp. 32-39
Author(s):  
Hussein M. Sagban ◽  
◽  
Fadhel S. Fadhel ◽  

The main objective of this paper is to solve fuzzy initial value problems, in which the fuzziness occurs in the initial conditions. The proposed approach, namely the modified variational iteration method, will be used to find the solution of fuzzy initial value problem approximately and to increase the rate of convergence of the variational iteration method. From the obtained results, as it is expected, the approximate results of the proposed method are more accurate than those results obtained without using the modified variational iteration method.


Sign in / Sign up

Export Citation Format

Share Document