scholarly journals Hitting Times of Walks on Graphs through Voltages

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
José Luis Palacios ◽  
Eduardo Gómez ◽  
Miguel Del Río

We derive formulas for the expected hitting times of general random walks on graphs, in terms of voltages, with very elementary electric means. Under this new light we revise bounds and hitting times for birth-and-death Markov chains and for walks on graphs with cutpoints, and give some exact computations on the necklace graph. We also prove Tetali’s formula for hitting times without making use of the reciprocity principle. In fact this principle follows as a corollary of our argument that also yields as corollaries the triangular inequality for effective resistances and the reversibility of the sum of hitting times around a tour.

1990 ◽  
Vol 4 (4) ◽  
pp. 489-492 ◽  
Author(s):  
José Luis Palacios

Aleliunas et al. [3] proved that for a random walk on a connected raph G = (V, E) on N vertices, the expected minimum number of steps to visit all vertices is bounded by 2|E|(N - 1), regardless of the initial state. We give here a simple proof of that result through an equality involving hitting times of vertices that can be extended to an inequality for hitting times of edges, thus obtaining a bound for the expected minimum number of steps to visit all edges exactly once in each direction.


2003 ◽  
Vol 2003 (30) ◽  
pp. 1911-1922 ◽  
Author(s):  
Mihyun Kang

We derive the explicit formulas of the probability generating functions of the first hitting times of simple random walks on graphs with congestion points using group representations.


2007 ◽  
Vol 202 (1) ◽  
pp. 144-154 ◽  
Author(s):  
Jianjun Paul Tian ◽  
Zhenqiu Liu

Sign in / Sign up

Export Citation Format

Share Document