scholarly journals Dynamic Behavior of a One-Dimensional Wave Equation with Memory and Viscous Damping

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Jing Wang

We study the dynamic behavior of a one-dimensional wave equation with both exponential polynomial kernel memory and viscous damping under the Dirichlet boundary condition. By introducing some new variables, the time-variant system is changed into a time-invariant one. The detailed spectral analysis is presented. It is shown that all eigenvalues of the system approach a line that is parallel to the imaginary axis. The residual and continuous spectral sets are shown to be empty. The main result is the spectrum-determined growth condition that is one of the most difficult problems for infinite-dimensional systems. Consequently, an exponential stability is concluded.

2021 ◽  
Vol 130 (2) ◽  
pp. 025104
Author(s):  
Misael Ruiz-Veloz ◽  
Geminiano Martínez-Ponce ◽  
Rafael I. Fernández-Ayala ◽  
Rigoberto Castro-Beltrán ◽  
Luis Polo-Parada ◽  
...  

Author(s):  
V. I. Korzyuk ◽  
J. V. Rudzko

In this article, we study the classical solution of the mixed problem in a quarter of a plane and a half-plane for a one-dimensional wave equation. On the bottom of the boundary, Cauchy conditions are specified, and the second of them has a discontinuity of the first kind at one point. Smooth boundary condition is set at the side boundary. The solution is built using the method of characteristics in an explicit analytical form. Uniqueness is proved and conditions are established under which a piecewise-smooth solution exists. The problem with linking conditions is considered.


2019 ◽  
Vol 27 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Ammar Khanfer ◽  
Alexander Bukhgeim

AbstractWe prove a global uniqueness theorem of reconstruction of a matrix-potential {a(x,t)} of one-dimensional wave equation {\square u+au=0}, {x>0,t>0}, {\square=\partial_{t}^{2}-\partial_{x}^{2}} with zero Cauchy data for {t=0} and given Cauchy data for {x=0}, {u(0,t)=0}, {u_{x}(0,t)=g(t)}. Here {u,a,f}, and g are {n\times n} smooth real matrices, {\det(f(0))\neq 0}, and the matrix {\partial_{t}a} is known.


Sign in / Sign up

Export Citation Format

Share Document