compact finite difference method
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ravneet Kaur ◽  
Shallu ◽  
Sachin Kumar ◽  
V. K. Kukreja

In this work, computational analysis of generalized Burger’s-Fisher and generalized Burger’s-Huxley equation is carried out using the sixth-order compact finite difference method. This technique deals with the nonstandard discretization of the spatial derivatives and optimized time integration using the strong stability-preserving Runge-Kutta method. This scheme inculcates four stages and third-order accuracy in the time domain. The stability analysis is discussed using eigenvalues of the coefficient matrix. Several examples are discussed for their approximate solution, and comparisons are made to show the efficiency and accuracy of CFDM6 with the results available in the literature. It is found that the present method is easy to implement with less computational effort and is highly accurate also.


Author(s):  
Mahboubeh Molavi-Arabshahi ◽  
Zahra Saeidi

In this paper, the compact finite difference scheme as unconditionally stable method is applied to some type of fractional derivative equation. We intend to solve with this scheme two kinds of a fractional derivative, first a fractional order system of Granwald-Letnikov type 1 for influenza and second fractional reaction sub diffusion equation. Also, we analyzed the stability of equilibrium points of this system. The convergence of the compact finite difference scheme in norm 2 are proved. Finally, various cases are used to test the numerical method. In comparison to other existing numerical methods, our results show that the scheme yields an accurate solution that is quick to compute.


Author(s):  
Shufang Hu ◽  
Wenlin Qiu ◽  
Hongbin Chen

Abstract A predictor–corrector compact finite difference scheme is proposed for a nonlinear partial integro-differential equation. In our method, the time direction is approximated by backward Euler scheme and the Riemann–Liouville (R–L) fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, a two-step predictor–corrector (P–C) algorithm called MacCormack method is used. A fully discrete scheme is constructed with space discretization by compact finite difference method. Numerical experiment presents the scheme is in good agreement with the theoretical analysis.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Hijaz Ahmad ◽  
Tufail A. Khan ◽  
Predrag S. Stanimirović ◽  
Yu-Ming Chu ◽  
Imtiaz Ahmad

Variational iteration method has been extensively employed to deal with linear and nonlinear differential equations of integer and fractional order. The key property of the technique is its ability and flexibility to investigate linear and nonlinear models conveniently and accurately. The current study presents an improved algorithm to the variational iteration algorithm-II (VIA-II) for the numerical treatment of diffusion as well as convection-diffusion equations. This newly introduced modification is termed as the modified variational iteration algorithm-II (MVIA-II). The convergence of the MVIA-II is studied in the case of solving nonlinear equations. The main advantage of the MVIA-II improvement is an auxiliary parameter which makes sure a fast convergence of the standard VIA-II iteration algorithm. In order to verify the stability, accuracy, and computational speed of the method, the obtained solutions are compared numerically and graphically with the exact ones as well as with the results obtained by the previously proposed compact finite difference method and second kind Chebyshev wavelets. The comparison revealed that the modified version yields accurate results, converges rapidly, and offers better robustness in comparison with other methods used in the literature. Moreover, the basic idea depicted in this study is relied upon the possibility of the MVIA-II being utilized to handle nonlinear differential equations that arise in different fields of physical and biological sciences. A strong motivation for such applications is the fact that any discretization, transformation, or any assumptions are not required for this proposed algorithm in finding appropriate numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document