scholarly journals A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Fabio Baselice ◽  
Giampaolo Ferraioli ◽  
Vito Pascazio

Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.

2020 ◽  
Vol 8 (6) ◽  
pp. 5820-5825

Human computer interaction is a fast growing area of research where in the physiological signals are used to identify human emotion states. Identifying emotion states can be done using various approaches. One such approach which gained interest of research is through physiological signals using EEG. In the present work, a novel approach is proposed to elicit emotion states using 3-D Video-audio stimuli. Around 66 subjects were involved during data acquisition using 32 channel Enobio device. FIR filter is used to preprocess the acquired raw EEG signals. The desired frequency bands like alpha, delta, beta and theta are extracted using 8-level DWT. The statistical features, Hurst exponential, entropy, power, energy, differential entropy of each bands are computed. Artificial Neural network is implemented using Sequential Keras model and applied on the extracted features to classify in to four classes (HVLA, HVHA, LVHA and LVLA) and eight discrete emotion states like clam, relax, happy, joy, sad, fear, tensed and bored. The performance of ANN classifier found to perform better for 4- classes than 8-classes with a classification rate of 90.835% and 74.0446% respectively. The proposed model achieved better performance rate in detecting discrete emotion states. This model can be used to build applications on health like stress / depression detection and on entertainment to build emotional DJ.


2016 ◽  
Vol 270 ◽  
pp. 111-123 ◽  
Author(s):  
Sérgio Pereira ◽  
Adriano Pinto ◽  
Jorge Oliveira ◽  
Adriënne M. Mendrik ◽  
José H. Correia ◽  
...  

Author(s):  
ANDRÉ RICARDO BACKES ◽  
DALCIMAR CASANOVA ◽  
ODEMIR MARTINEZ BRUNO

Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.


2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Sapideh Yazdani ◽  
Rubiyah Yusof ◽  
Alireza Karimian ◽  
Amir Hossein Riazi

Automatic segmentation of brain images is a challenging problem due to the complex structure of brain images, as well as to the absence of anatomy models. Brain segmentation into white matter, gray matter, and cerebral spinal fluid, is an important stage for many problems, including the studies in 3-D visualizations for disease detection and surgical planning. In this paper we present a novel fully automated framework for tissue classification of brain in MR Images that is a combination of two techniques: GLCM and SVM, each of which has been customized for the problem of brain tissue segmentation such that the results are more robust than its individual components that is demonstrated through experiments.  The proposed framework has been validated on brainweb dataset of different modalities, with desirable performance in the presence of noise and bias field. To evaluate the performance of the proposed method the Kappa similarity index is computed. Our method achieves higher kappa index (91.5) compared with other methods currently in use. As an application, our method has been used for segmentation of MR images with promising results.


2013 ◽  
Vol 31 (10) ◽  
pp. 1709-1730 ◽  
Author(s):  
Ravi Bansal ◽  
Xuejun Hao ◽  
Feng Liu ◽  
Dongrong Xu ◽  
Jun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document