scholarly journals New Results on Passivity for Discrete-Time Stochastic Neural Networks with Time-Varying Delays

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Wei Kang ◽  
Jun Cheng ◽  
Xiangyang Cheng

The problem of passivity analysis for discrete-time stochastic neural networks with time-varying delays is investigated in this paper. New delay-dependent passivity conditions are obtained in terms of linear matrix inequalities. Less conservative conditions are obtained by using integral inequalities to aid in the achievement of criteria ensuring the positiveness of the Lyapunov-Krasovskii functional. At last, numerical examples are given to show the effectiveness of the proposed method.

2009 ◽  
Vol 2009 ◽  
pp. 1-17
Author(s):  
Jianjiang Yu

The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay is investigated. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. Two numerical examples are given to show the effectiveness and the benefits of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jun-kang Tian ◽  
Yan-min Liu

This paper is concerned with the delay-dependent stability of systems with distributed time-varying delays. The novelty relies on the use of some new inequalities which are less conservative than some existing inequalities. A less conservative stability criterion is obtained by constructing some new augmented Lyapunov–Krasovskii functionals, which are given in terms of linear matrix inequalities. The effectiveness of the presented criterion is demonstrated by two numerical examples.


2015 ◽  
Vol 93 (4) ◽  
pp. 398-408 ◽  
Author(s):  
O.M. Kwon ◽  
M.J. Park ◽  
S.M. Lee ◽  
E.J. Cha

This paper proposes new delay-dependent stability criteria for discrete-time neural networks with interval time-varying delays and probabilistic occurring parameter uncertainties. It is assumed that parameter uncertainties are changed with the environment, explored using random situations, and its stochastic information is included in the proposed method. By constructing a suitable Lyapunov–Krasovskii functional, new delay-dependent stability criteria for the concerned systems are established in terms of linear matrix inequalities, which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.


2010 ◽  
Vol 24 (08) ◽  
pp. 775-789 ◽  
Author(s):  
O. M. KWON ◽  
S. M. LEE ◽  
JU H. PARK

In this paper, the problem of stability analysis of neural networks with discrete time-varying delays is considered. By constructing a new Lyapunov functional and some novel analysis techniques, new delay-dependent criteria for checking the asymptotic stability of the neural networks are established. The criteria are presented in terms of linear matrix inequalities, which can be easily solved and checked by various convex optimization algorithms. Three numerical examples are included to show the superiority of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

This paper investigates the problem of stability analysis for neural networks with time-varying delays. By utilizing the Wirtinger-based integral inequality and constructing a suitable augmented Lyapunov-Krasovskii functional, two less conservative delay-dependent criteria to guarantee the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). Three numerical examples are included to explain the superiority of the proposed methods by comparing maximum delay bounds with the recent results published in other literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The problem of passivity analysis for neural networks with time-varying delays and parameter uncertainties is considered. By the consideration of newly constructed Lyapunov-Krasovskii functionals, improved sufficient conditions to guarantee the passivity of the concerned networks are proposed with the framework of linear matrix inequalities (LMIs), which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via two numerical examples by the comparison of maximum allowable delay bounds.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Weiping Wang ◽  
Meiqi Wang ◽  
Xiong Luo ◽  
Lixiang Li ◽  
Wenbing Zhao ◽  
...  

This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov–Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Qiankun Song ◽  
Jinde Cao

The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed criteria. It is noteworthy that because neither model transformation nor free-weighting matrices are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained results are less conservative and more computationally efficient.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document