scholarly journals Theoretical Modeling and Implementation of Traveling Wave Sensor Based on PCB Coils

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Zewen Li ◽  
Tuofu Deng ◽  
Xiangjun Zeng ◽  
Feng Deng ◽  
Lei Shu

Based on analyzing characteristics of Rogowski coil, a new type of PCB traveling wave sensor with simple structure, high linearity, and anti-interference ability is proposed. The sensor has fine physical structure, which can effectively resist external electromagnetic interference by anti-interference measurement. In addition, it can greatly improve mutual inductance based on simple combinations. Simulations show that the new PCB traveling wave sensor can validly extract and deliver traveling wave signal and therefore realize fault location and protection accurately.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiao-Wei Liu

After a transmission line fails, quickly and accurately find the fault point and deal with it, which is of great significance to maintaining the normal operation of the power system. Aiming at the problems of low accuracy of traditional traveling wave fault location methods and many affected factors, this paper relies on distributed traveling wave monitoring points arranged on transmission lines to study methods to improve the accuracy of traveling wave fault location on transmission lines. First, when a line fails, a traveling wave signal that moves to both ends will be generated and transmitted along the transmission line. We use the Radon transform algorithm to process the traveling wave signal. Then, this paper uses ant colony algorithm to analyze and verify the location and extent of transmission line faults and then optimizes high-precision collection and processing. Finally, the simulation distance measurement is carried out on double-terminal transmission lines and multiterminal transmission lines (T-shaped lines) with branches. The results show that, for double-ended transmission lines, the algorithm increases the speed of matrix calculations and at the same time makes the fault location error of the transmission grid still maintain the improved effect.


Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2788
Author(s):  
Xiaozhou Fan ◽  
Wenqi Zhang ◽  
Fangcheng Lü ◽  
Yueyi Sui ◽  
Jiaxue Wang ◽  
...  

Fluorescent optical fiber temperature sensors have attracted extensive attention due to their strong anti-electromagnetic interference ability, good high-voltage insulation performance, and fast response speed. The fluorescent material of the sensor probe directly determines the temperature measurement effect. In this paper, a new type of fluorescent material with a Mn2+-doped Ca2SiO4 phosphor (CSO:Mn2+) is synthesized via the solid-state reaction method at 1450 °C. The X-ray diffraction spectrum shows that the sintered sample has a pure phase structure, although the diffraction peaks show a slight shift when dopants are added. The temperature dependence of the fluorescence intensity and lifetime in the range from 290 to 450 K is explored with the help of a fluorescence spectrometer. Green emission bands peaking at 475 and 550 nm from Mn2+ are observed in the fluorescence spectra, and the intensity of emitted light decreases as the temperature rises. The average lifetime of CSO:Mn2+ is 17 ms, which is much higher than the commonly used fluorescent materials on the market. The fluorescence lifetime decreases with increasing temperature and shows a good linear relationship within a certain temperature range. The research results are of great significance to the development of a new generation of fluorescence sensors.


Sign in / Sign up

Export Citation Format

Share Document