scholarly journals Benchmarking RCGAu on the Noiseless BBOB Testbed

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Babatunde A. Sawyerr ◽  
Aderemi O. Adewumi ◽  
M. Montaz Ali

RCGAu is a hybrid real-coded genetic algorithm with “uniform random direction” search mechanism. Theuniform random directionsearch mechanism enhances the local search capability of RCGA. In this paper, RCGAu was tested on the BBOB-2013 noiseless testbed using restarts till a maximum number of function evaluations (#FEs) of 105×Dare reached, whereDis the dimension of the function search space. RCGAu was able to solve several test functions in the low search dimensions of 2 and 3 to the desired accuracy of 108. Although RCGAu found it difficult in getting a solution with the desired accuracy 108for high conditioning and multimodal functions within the specified maximum #FEs, it was able to solve most of the test functions with dimensions up to 40 with lower precisions.

2013 ◽  
Vol 21 (2) ◽  
pp. 341-360 ◽  
Author(s):  
Reza Zamani

An effective hybrid evolutionary search method is presented which integrates a genetic algorithm with a local search. Whereas its genetic algorithm improves the solutions obtained by its local search, its local search component utilizes a synergy between two neighborhood schemes in diversifying the pool used by the genetic algorithm. Through the integration of these two searches, the crossover operators further enhance the solutions that are initially local optimal for both neighborhood schemes; and the employed local search provides fresh solutions for the pool whenever needed. The joint endeavor of its local search mechanism and its genetic algorithm component has made the method both robust and effective. The local search component examines unvisited regions of search space and consequently diversifies the search; and the genetic algorithm component recombines essential pieces of information existing in several high-quality solutions and intensifies the search. It is through striking such a balance between diversification and intensification that the method exploits the structure of search space and produces superb solutions. The method has been implemented as a procedure for the resource-constrained project scheduling problem. The computational experiments on 2,040 benchmark instances indicate that the procedure is very effective.


2021 ◽  
Author(s):  
Che-Hang Cliff Chan

The thesis presents a Genetic Algorithm with Adaptive Search Space (GAASS) proposed to improve both convergence performance and solution accuracy of traditional Genetic Algorithms(GAs). The propsed GAASS method has bee hybridized to a real-coded genetic algorithm to perform hysteresis parameters identification and hystereis invers compensation of an electromechanical-valve acuator installed on a pneumatic system. The experimental results have demonstrated the supreme performance of the proposed GAASS in the search of optimum solutions.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jiquan Wang ◽  
Zhiwen Cheng ◽  
Okan K. Ersoy ◽  
Panli Zhang ◽  
Weiting Dai ◽  
...  

An improved real-coded genetic algorithm (IRCGA) is proposed to solve constrained optimization problems. First, a sorting grouping selection method is given with the advantage of easy realization and not needing to calculate the fitness value. Secondly, a heuristic normal distribution crossover (HNDX) operator is proposed. It can guarantee the cross-generated offsprings to locate closer to the better one among the two parents and the crossover direction to be very close to the optimal crossover direction or to be consistent with the optimal crossover direction. In this way, HNDX can ensure that there is a great chance of generating better offsprings. Thirdly, since the GA in the existing literature has many iterations, the same individuals are likely to appear in the population, thereby making the diversity of the population worse. In IRCGA, substitution operation is added after the crossover operation so that the population does not have the same individuals, and the diversity of the population is rich, thereby helping avoid premature convergence. Finally, aiming at the shortcoming of a single mutation operator which cannot simultaneously take into account local search and global search, this paper proposes a combinational mutation method, which makes the mutation operation take into account both local search and global search. The computational results with nine examples show that the IRCGA has fast convergence speed. As an example application, the optimization model of the steering mechanism of vehicles is formulated and the IRCGA is used to optimize the parameters of the steering trapezoidal mechanism of three vehicle types, with better results than the other methods used.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bing Li ◽  
Anxie Tuo ◽  
Hanyue Kong ◽  
Sujiao Liu ◽  
Jia Chen

This paper uses neural network as a predictive model and genetic algorithm as an online optimization algorithm to simulate the noise processing of Chinese-English parallel corpus. At the same time, according to the powerful random global search mechanism of genetic algorithm, this paper studied the principle and process of noise processing in Chinese-English parallel corpus. Aiming at the task of identifying isolated words for unspecified persons, taking into account the inadequacies of the algorithms in standard genetic algorithms and neural networks, this paper proposes a fast algorithm for training the network using genetic algorithms. Through simulation calculations, different characteristic parameters, the number of training samples, background noise, and whether a specific person affects the recognition result were analyzed and discussed and compared with the traditional dynamic time comparison method. This paper introduces the idea of reinforcement learning, uses different reward mechanisms to solve the inconsistency of loss function and evaluation index measurement methods, and uses different decoding methods to alleviate the problem of exposure bias. It uses various simple genetic operations and the survival of the fittest selection mechanism to guide the learning process and determine the direction of the search, and it can search multiple regions in the solution space at the same time. In addition, it also has the advantage of not being restricted by the restrictive conditions of the search space (such as differentiable, continuous, and unimodal). At the same time, a method of using English subword vectors to initialize the parameters of the translation model is given. The research results show that the neural network recognition method based on genetic algorithm which is given in this paper shows its ability of quickly learning network weights and it is superior to the standard in all aspects. The performance of the algorithm in genetic algorithm and neural network, with high recognition rate and unique application advantages, can achieve a win-win of time and efficiency.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1684
Author(s):  
Monique Simplicio Viana ◽  
Orides Morandin Junior ◽  
Rodrigo Colnago Contreras

In many situations, an expert must visually analyze an image arranged in grey levels. However, the human eye has strong difficulty in detecting details in this type of image, making it necessary to use artificial coloring techniques. The pseudo-coloring problem (PsCP) consists of assigning to a grey-level image, pre-segmented in K sub-regions, a set of K colors that are as dissimilar as possible. This problem is part of the well-known class of NP-Hard problems and, therefore, does not present an exact solution for all instances. Thus, meta-heuristics has been widely used to overcome this problem. In particular, genetic algorithm (GA) is one of those techniques that stands out in the literature and has already been used in PsCP. In this work, we present a new method that consists of an improvement of the GA specialized in solving the PsCP. In addition, we propose the addition of local search operators and rules for adapting parameters based on symmetric mapping functions to avoid common problems in this type of technique such as premature convergence and inadequate exploration in the search space. Our method is evaluated in three different case studies: the first consisting of the pseudo-colorization of real-world images on the RGB color space; the second consisting of the pseudo-colorization in RGB color space considering synthetic and abstract images in which its sub-regions are fully-connected; and the third consisting of the pseudo-colorization in the Munsell atlas color set. In all scenarios, our method is compared with other state-of-the-art techniques and presents superior results. Specifically, the use of mapped automatic adjustment operators proved to be powerful in boosting the proposed meta-heuristic to obtain more robust results in all evaluated instances of PsCP in all the considered case studies.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Leilei Cao ◽  
Lihong Xu ◽  
Erik D. Goodman

A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.


2021 ◽  
Vol 11 (3) ◽  
pp. 7283-7289
Author(s):  
F. A. Alshammari ◽  
G. A. Alshammari ◽  
T. Guesmi ◽  
A. A. Alzamil ◽  
B. M. Alshammari ◽  
...  

This study presents a metaheuristic method for the optimum design of multimachine Power System Stabilizers (PSSs). In the proposed method, referred to as Local Search-based Non-dominated Sorting Genetic Algorithm (LSNSGA), a local search mechanism is incorporated at the end of the second version of the non-dominated sorting genetic algorithm in order to improve its convergence rate and avoid the convergence to local optima. The parameters of PSSs are tuned using LSNSGA over a wide range of operating conditions, in order to provide the best damping of critical electromechanical oscillations. Eigenvalue-based objective functions are employed in the PSS design process. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation proved that the proposed controller provided competitive results compared to other metaheuristic techniques.


Sign in / Sign up

Export Citation Format

Share Document