scholarly journals An Improved Local Search Genetic Algorithm with a New Mapped Adaptive Operator Applied to Pseudo-Coloring Problem

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1684
Author(s):  
Monique Simplicio Viana ◽  
Orides Morandin Junior ◽  
Rodrigo Colnago Contreras

In many situations, an expert must visually analyze an image arranged in grey levels. However, the human eye has strong difficulty in detecting details in this type of image, making it necessary to use artificial coloring techniques. The pseudo-coloring problem (PsCP) consists of assigning to a grey-level image, pre-segmented in K sub-regions, a set of K colors that are as dissimilar as possible. This problem is part of the well-known class of NP-Hard problems and, therefore, does not present an exact solution for all instances. Thus, meta-heuristics has been widely used to overcome this problem. In particular, genetic algorithm (GA) is one of those techniques that stands out in the literature and has already been used in PsCP. In this work, we present a new method that consists of an improvement of the GA specialized in solving the PsCP. In addition, we propose the addition of local search operators and rules for adapting parameters based on symmetric mapping functions to avoid common problems in this type of technique such as premature convergence and inadequate exploration in the search space. Our method is evaluated in three different case studies: the first consisting of the pseudo-colorization of real-world images on the RGB color space; the second consisting of the pseudo-colorization in RGB color space considering synthetic and abstract images in which its sub-regions are fully-connected; and the third consisting of the pseudo-colorization in the Munsell atlas color set. In all scenarios, our method is compared with other state-of-the-art techniques and presents superior results. Specifically, the use of mapped automatic adjustment operators proved to be powerful in boosting the proposed meta-heuristic to obtain more robust results in all evaluated instances of PsCP in all the considered case studies.

Author(s):  
Hicham El Hassani ◽  
Said Benkachcha ◽  
Jamal Benhra

Inspired by nature, genetic algorithms (GA) are among the greatest meta-heuristics optimization methods that have proved their effectiveness to conventional NP-hard problems, especially the traveling salesman problem (TSP) which is one of the most studied Supply chain management problems. This paper proposes a new crossover operator called Jump Crossover (JMPX) for solving the travelling salesmen problem using a genetic algorithm (GA) for near-optimal solutions, to conclude on its efficiency compared to solutions quality given by other conventional operators to the same problem, namely, Partially matched crossover (PMX), Edge recombination Crossover (ERX) and r-opt heuristic with consideration of computational overload. We adopt the path representation technique for our chromosome which is the most direct representation and a low mutation rate to isolate the search space exploration ability of each crossover. The experimental results show that in most cases JMPX can remarkably improve the solution quality of the GA compared to the two existing classic crossover approaches and the r-opt heuristic.


2010 ◽  
Vol 20 (04) ◽  
pp. 307-324 ◽  
Author(s):  
THÉ VAN LUONG ◽  
NOUREDINE MELAB ◽  
EL-GHAZALI TALBI

Local search algorithms are powerful heuristics for solving computationally hard problems in science and industry. In these methods, designing neighborhood operators to explore large promising regions of the search space may improve the quality of the obtained solutions at the expense of a high-cost computation process. As a consequence, the use of GPU computing provides an efficient way to speed up the search. However, designing applications on a GPU is still complex and many issues have to be faced. We provide a methodology to design and implement different neighborhood structures for LS algorithms on a GPU. The work has been evaluated for binary problems and the obtained results are convincing both in terms of efficiency, quality and robustness of the provided solutions at run time.


2013 ◽  
Vol 21 (2) ◽  
pp. 341-360 ◽  
Author(s):  
Reza Zamani

An effective hybrid evolutionary search method is presented which integrates a genetic algorithm with a local search. Whereas its genetic algorithm improves the solutions obtained by its local search, its local search component utilizes a synergy between two neighborhood schemes in diversifying the pool used by the genetic algorithm. Through the integration of these two searches, the crossover operators further enhance the solutions that are initially local optimal for both neighborhood schemes; and the employed local search provides fresh solutions for the pool whenever needed. The joint endeavor of its local search mechanism and its genetic algorithm component has made the method both robust and effective. The local search component examines unvisited regions of search space and consequently diversifies the search; and the genetic algorithm component recombines essential pieces of information existing in several high-quality solutions and intensifies the search. It is through striking such a balance between diversification and intensification that the method exploits the structure of search space and produces superb solutions. The method has been implemented as a procedure for the resource-constrained project scheduling problem. The computational experiments on 2,040 benchmark instances indicate that the procedure is very effective.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Babatunde A. Sawyerr ◽  
Aderemi O. Adewumi ◽  
M. Montaz Ali

RCGAu is a hybrid real-coded genetic algorithm with “uniform random direction” search mechanism. Theuniform random directionsearch mechanism enhances the local search capability of RCGA. In this paper, RCGAu was tested on the BBOB-2013 noiseless testbed using restarts till a maximum number of function evaluations (#FEs) of 105×Dare reached, whereDis the dimension of the function search space. RCGAu was able to solve several test functions in the low search dimensions of 2 and 3 to the desired accuracy of 108. Although RCGAu found it difficult in getting a solution with the desired accuracy 108for high conditioning and multimodal functions within the specified maximum #FEs, it was able to solve most of the test functions with dimensions up to 40 with lower precisions.


Author(s):  
S. E. Avramenko ◽  
T. A. Zheldak ◽  
L. S. Koriashkina

Context. One of the leading problems in the world of artificial intelligence is the optimization of complex systems, which is often represented as a nonlinear function that needs to be minimized. Such functions can be multimodal, non-differentiable, and even set as a black box. Building effective methods for solving global optimization problems raises great interest among scientists. Objective. Development of a new hybrid genetic algorithm for solving global optimization problems, which is faster than existing analogues. Methods. One of the crucial challenges for hybrid methods in solving nonlinear global optimization problems is the rational use of local search, as its application is accompanied by quite expensive computational costs. This paper proposes a new GBOHGA hybrid genetic algorithm that reproduces guided local search and combines two successful modifications of genetic algorithms. The first one is BOHGA that establishes a qualitative balance between local and global search. The second one is HGDN that prevents reexploration of the previously explored areas of a search space. In addition, a modified bump-function and an adaptive scheme for determining one of its parameters – the radius of the “deflation” of the objective function in the vicinity of the already found local minimum – were presented to accelerate the algorithm. Results. GBOHGA performance compared to other known stochastic search heuristics on a set of 33 test functions in 5 and 25dimensional spaces. The results of computational experiments indicate the competitiveness of GBOHGA, especially in problems with multimodal functions and a large number of variables. Conclusions. The new GBOHGA hybrid algorithm, developed on the basis of the integration of guided local search ideas and BOHGA and HGDN algorithms, allows to save significant computing resources and speed up the solution process of the global optimization problem. It should be used to solve global optimization problems that arise in engineering design, solving organizational and management problems, especially when the mathematical model of the problem is complex and multidimensional.


Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Ewa Ropelewska

The aim of this study was to evaluate the usefulness of the texture and geometric parameters of endocarp (pit) for distinguishing different cultivars of sweet cherries using image analysis. The textures from images converted to color channels and the geometric parameters of the endocarp (pits) of sweet cherry ‘Kordia’, ‘Lapins’, and ‘Büttner’s Red’ were calculated. For the set combining the selected textures from all color channels, the accuracy reached 100% when comparing ‘Kordia’ vs. ‘Lapins’ and ‘Kordia’ vs. ‘Büttner’s Red’ for all classifiers. The pits of ‘Kordia’ and ‘Lapins’, as well as ‘Kordia’ and ‘Büttner’s Red’ were also 100% correctly discriminated for discriminative models built separately for RGB, Lab and XYZ color spaces, G, L and Y color channels and for models combining selected textural and geometric features. For discrimination ‘Lapins’ and ‘Büttner’s Red’ pits, slightly lower accuracies were determined—up to 93% for models built based on textures selected from all color channels, 91% for the RGB color space, 92% for the Lab and XYZ color spaces, 84% for the G and L color channels, 83% for the Y channel, 94% for geometric features, and 96% for combined textural and geometric features.


2021 ◽  
Vol 13 (6) ◽  
pp. 1211
Author(s):  
Pan Fan ◽  
Guodong Lang ◽  
Bin Yan ◽  
Xiaoyan Lei ◽  
Pengju Guo ◽  
...  

In recent years, many agriculture-related problems have been evaluated with the integration of artificial intelligence techniques and remote sensing systems. The rapid and accurate identification of apple targets in an illuminated and unstructured natural orchard is still a key challenge for the picking robot’s vision system. In this paper, by combining local image features and color information, we propose a pixel patch segmentation method based on gray-centered red–green–blue (RGB) color space to address this issue. Different from the existing methods, this method presents a novel color feature selection method that accounts for the influence of illumination and shadow in apple images. By exploring both color features and local variation in apple images, the proposed method could effectively distinguish the apple fruit pixels from other pixels. Compared with the classical segmentation methods and conventional clustering algorithms as well as the popular deep-learning segmentation algorithms, the proposed method can segment apple images more accurately and effectively. The proposed method was tested on 180 apple images. It offered an average accuracy rate of 99.26%, recall rate of 98.69%, false positive rate of 0.06%, and false negative rate of 1.44%. Experimental results demonstrate the outstanding performance of the proposed method.


2021 ◽  
Vol 13 (5) ◽  
pp. 939
Author(s):  
Yongan Xue ◽  
Jinling Zhao ◽  
Mingmei Zhang

To accurately extract cultivated land boundaries based on high-resolution remote sensing imagery, an improved watershed segmentation algorithm was proposed herein based on a combination of pre- and post-improvement procedures. Image contrast enhancement was used as the pre-improvement, while the color distance of the Commission Internationale de l´Eclairage (CIE) color space, including the Lab and Luv, was used as the regional similarity measure for region merging as the post-improvement. Furthermore, the area relative error criterion (δA), the pixel quantity error criterion (δP), and the consistency criterion (Khat) were used for evaluating the image segmentation accuracy. The region merging in Red–Green–Blue (RGB) color space was selected to compare the proposed algorithm by extracting cultivated land boundaries. The validation experiments were performed using a subset of Chinese Gaofen-2 (GF-2) remote sensing image with a coverage area of 0.12 km2. The results showed the following: (1) The contrast-enhanced image exhibited an obvious gain in terms of improving the image segmentation effect and time efficiency using the improved algorithm. The time efficiency increased by 10.31%, 60.00%, and 40.28%, respectively, in the RGB, Lab, and Luv color spaces. (2) The optimal segmentation and merging scale parameters in the RGB, Lab, and Luv color spaces were C for minimum areas of 2000, 1900, and 2000, and D for a color difference of 1000, 40, and 40. (3) The algorithm improved the time efficiency of cultivated land boundary extraction in the Lab and Luv color spaces by 35.16% and 29.58%, respectively, compared to the RGB color space. The extraction accuracy was compared to the RGB color space using the δA, δP, and Khat, that were improved by 76.92%, 62.01%, and 16.83%, respectively, in the Lab color space, while they were 55.79%, 49.67%, and 13.42% in the Luv color space. (4) Through the visual comparison, time efficiency, and segmentation accuracy, the comprehensive extraction effect using the proposed algorithm was obviously better than that of RGB color-based space algorithm. The established accuracy evaluation indicators were also proven to be consistent with the visual evaluation. (5) The proposed method has a satisfying transferability by a wider test area with a coverage area of 1 km2. In addition, the proposed method, based on the image contrast enhancement, was to perform the region merging in the CIE color space according to the simulated immersion watershed segmentation results. It is a useful attempt for the watershed segmentation algorithm to extract cultivated land boundaries, which provides a reference for enhancing the watershed algorithm.


Author(s):  
Abdullah Türk ◽  
Dursun Saral ◽  
Murat Özkök ◽  
Ercan Köse

Outfitting is a critical stage in the shipbuilding process. Within the outfitting, the construction of pipe systems is a phase that has a significant effect on time and cost. While cutting the pipes required for the pipe systems in shipyards, the cutting process is usually performed randomly. This can result in large amounts of trim losses. In this paper, we present an approach to minimize these losses. With the proposed method it is aimed to base the pipe cutting process on a specific systematic. To solve this problem, Genetic Algorithms (GA), which gives successful results in solving many problems in the literature, have been used. Different types of genetic operators have been used to investigate the search space of the problem well. The results obtained have proven the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document