scholarly journals The Boundedness of Some Integral Operators on Weighted Hardy Spaces Associated with Schrödinger Operators

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Hua Wang

LetL=-Δ+Vbe a Schrödinger operator acting onL2(Rn),n≥1, whereV≢0is a nonnegative locally integrable function onRn. In this paper, we will first define molecules for weighted Hardy spacesHLp(w)  (0<p≤1)associated withLand establish their molecular characterizations. Then, by using the atomic decomposition and molecular characterization ofHLp(w), we will show that the imaginary powerLiγis bounded onHLp(w)forn/(n+1)<p≤1, and the fractional integral operatorL-α/2is bounded fromHLp(w)toHLq(wq/p), where0<α<min{n/2,1},n/(n+1)<p≤n/(n+α), and1/q=1/p-α/n.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Hua Wang

Let TΩ be the singular integral operator with variable kernel Ω(x,z). In this paper, by using the atomic decomposition theory of weighted weak Hardy spaces, we will obtain the boundedness properties of TΩ on these spaces, under some Dini type conditions imposed on the variable kernel Ω(x,z).


1987 ◽  
Vol 101 (1) ◽  
pp. 113-121
Author(s):  
Hans P. Heinig

AbstractIn this note we utilize the atomic decomposition of weighted Hardy spaces to prove weighted versions of Hardy's inequality for the Fourier transform with Muckenhoupt weight. The result extends to certain integral operators with homogeneous kernels of degree −1.


2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


1998 ◽  
Vol 50 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Yong Ding ◽  
Shanzhen Lu

AbstractGiven function Ω on ℝn , we define the fractional maximal operator and the fractional integral operator by and respectively, where 0 < α < n. In this paper we study the weighted norm inequalities of MΩα and TΩα for appropriate α, s and A(p, q) weights in the case that Ω∈ Ls(Sn-1)(s> 1), homogeneous of degree zero.


2009 ◽  
Vol 80 (2) ◽  
pp. 324-334 ◽  
Author(s):  
H. GUNAWAN ◽  
Y. SAWANO ◽  
I. SIHWANINGRUM

AbstractWe discuss here the boundedness of the fractional integral operatorIαand its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness ofIα, we employ the boundedness of the so-called maximal fractional integral operatorIa,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Canqin Tang ◽  
Qing Wu ◽  
Jingshi Xu

By some estimates for the variable fractional maximal operator, the authors prove that the fractional integral operator is bounded and satisfies the weak-type inequality on variable exponent Lebesgue spaces.


Author(s):  
Zhiwei Hao ◽  
Yong Jiao

AbstractIn this paper we investigate the boundedness of fractional integral operators on predictable martingale Hardy spaces with variable exponents defined on a probability space. More precisely, let f = (f


Sign in / Sign up

Export Citation Format

Share Document