scholarly journals The Mathematical Basis of the Inverse Scattering Problem for Cracks from Near-Field Data

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yao Mao ◽  
Yongguang Chen ◽  
Jun Guo

We consider the acoustic scattering problem from a crack which has Dirichlet boundary condition on one side and impedance boundary condition on the other side. The inverse scattering problem in this paper tries to determine the shape of the crack and the surface impedance coefficient from the near-field measurements of the scattered waves, while the source point is placed on a closed curve. We firstly establish a near-field operator and focus on the operator’s mathematical analysis. Secondly, we obtain a uniqueness theorem for the shape and surface impedance. Finally, by using the operator’s properties and modified linear sampling method, we reconstruct the shape and surface impedance.

1989 ◽  
Vol 106 (3) ◽  
pp. 553-569 ◽  
Author(s):  
T. S. Angell ◽  
David Colton ◽  
Rainer Kress

AbstractWe first examine the class of far field patterns for the scalar Helmholtz equation in ℝ2 corresponding to incident time harmonic plane waves subject to an impedance boundary condition where the impedance is piecewise constant with respect to the incident direction and continuous with respect to x ε ∂ D where ∂ D is the scattering obstacle. We then examine the class of far field patterns for Maxwell's equations in subject to an impedance boundary condition with constant impedance. The results obtained are used to derive optimization algorithms for solving the inverse scattering problem.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Guo ◽  
Guozheng Yan ◽  
Mingjian Cai

This paper is concerned with the scattering problem of time-harmonic acoustic plane waves by an impenetrable obstacle buried in a piecewise homogeneous medium. The so-called generalized impedance boundary condition is imposed on the boundary of the obstacle. Firstly, the well posedness of the solution to the direct scattering problem is established by using the boundary integral method. Then a uniqueness result for the inverse scattering problem is proved; that is, both of the obstacle’s shape and the impedances (μ,λ) can be uniquely determined from far field measurements. Furthermore, a mathematical basis is given to reconstruct the shape of the obstacle by using a modified linear sampling method.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document