scholarly journals Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hamed I. Hamouda ◽  
Hussein N. Nassar ◽  
Hekmat R. Madian ◽  
Salem S. Abu Amr ◽  
Nour Sh. El-Gendy

Pichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.32 g/L with 44% bioethanol yield.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nour Sh. El-Gendy ◽  
Hekmat R. Madian ◽  
Salem S. Abu Amr

A statistical model was developed in this study to describe bioethanol production through a batch fermentation process of sugarcane molasses by locally isolatedSaccharomyces cerevisiaeY-39. Response surface methodology RSM based on central composite face centered design CCFD was employed to statistically evaluate and optimize the conditions for maximum bioethanol production and study the significance and interaction of incubation period, initial pH, incubation temperature, and molasses concentration on bioethanol yield. With the use of the developed quadratic model equation, a maximum ethanol production of 255 g/L was obtained in a batch fermentation process at optimum operating conditions of approximately 71 h, pH 5.6, 38°C, molasses concentration 18% wt.%, and 100 rpm.


2009 ◽  
Vol 25 ◽  
pp. S260-S261 ◽  
Author(s):  
S. Ferreira ◽  
A.P. Duarte ◽  
M.H.L. Ribeiro ◽  
J.A. Queiroz ◽  
F.C. Domingues

2014 ◽  
Vol 79 (5) ◽  
pp. 613-626 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar ◽  
Maran Prakash

The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD) and total suspended solids (TSS) were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM) coupled with four-factor three-level Box-Behnken experimental design (BBD). The experimental results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial mathematical models were developed with high correlation of efficiency (R2) for COD, TSS removal and electrical energy consumption (EEC). The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 %) and TSS (93 %) with EEC of 2.40 Wh, which were confirmed by validation experiments.


Sign in / Sign up

Export Citation Format

Share Document