scholarly journals Influence of Exhaust Gas Recirculation, and Injection Timing on the Combustion, Performance and Emission Characteristics of a Cylinder Head Porous Medium Engine

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chidambaram Kannan ◽  
Thulasi Vijayakumar

Homogeneous combustion has the potential of achieving both near-zero emissions and low specific fuel consumption. However, the accomplishment of homogeneous combustion depends on the air flow structure inside the combustion chamber, fuel injection conditions, and turbulence as well as ignition conditions. Various methods and procedures are being adopted to establish the homogeneous combustion inside the engine cylinder. In this research work, a highly porous ceramic structure was introduced into the combustion chamber (underside of the cylinder head). The influence of operating parameters such as exhaust gas recirculation (EGR) and injection timing on the combustion, performance, and emission characteristics of such developed engine was investigated in this research work.

2018 ◽  
Vol 29 (3) ◽  
pp. 372-391 ◽  
Author(s):  
M Krishnamoorthi ◽  
R Malayalamurthi

The threat of fossil fuel depletion and augmented environmental pollution caused by diesel fleets can be curbed by adopting suitable fuel and engine modifications. In the present work, effects of engine speed (r/min), injection timing, injection pressure and compression ratio on performance and emission characteristics of a compression ignition engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether has been used, where the tests have been conducted at different charge inlet temperature and exhaust gas recirculation. All the experiments were conducted at the trade-off engine load that is 75% engine load. When the diesel engine operating with 320 K charge inlet temperature, brake thermal efficiency has been improved to 28.6%. Meanwhile reduced emission levels of carbon monoxide (0.025%) and hydrocarbon (12.3 ppm) were observed during the engine operation with 320 K charge inlet temperature and compression ratio of 18:1. The oxides of nitrogen have been reduced to 226 ppm at 16:1 compression ratio with 30% exhaust gas recirculation mode.


Sign in / Sign up

Export Citation Format

Share Document