scholarly journals Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Liming Yu ◽  
Qing Li ◽  
Bo Yu ◽  
Yang Yang ◽  
Zhenxiao Jin ◽  
...  

Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phoxexpression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jingyuan Li ◽  
Victor R Grijalva ◽  
Srinivasa T Reddy ◽  
Mansoureh Eghbali

Objectives: Paraoxonases (PON) gene family consists of three proteins PON1, PON2, and PON3. PON2 is an intracellular membrane-associated protein that is widely expressed in vascular cells and many tissues. At the subcellular level, PON2 is localized to both the ER and mitochondria, and protects against oxidative stress. Hypothesis: The aim of this study was to investigate the role of PON2 in myocardial ischemia reperfusion injury. Methods: PON2 deficient (PON2-/-) and WT male mice were subjected to in-vivo ischemia/reperfusion injury. The left anterior descending coronary artery was occluded for 30 min followed by 24 hr of reperfusion. The infarct size, mitochondrial calcium retention capacity (CRC) and reactive oxygen species (ROS) generation were measured. The expression of C/EBP homologous protein (CHOP), GSK3b and phosphate GSK3b protein were examined by Western Blot. The number of animals was 5-7/group and data were expressed as mean±SEM. T test were used for statistical analysis. Probability values <0.05 were considered statistically significant. Results: The infarct size was ~2 fold larger in PON2 deficient mice compared to WT mice (p<0.05). The threshold for opening of mitochondrial permeability transition pore (mPTP) in response to calcium overload was much lower in PON2-/- mice compared with WT mice (173±19 in PON2-/-, 250±41 in WT, nmol/mg-mitochondrial protein, p<0.05). The ROS production was ~2 fold higher in isolated cardiac mitochondria from PON2-/- mice compared with WT mice (p<0.05). ER stress protein CHOP increased significantly in PON2-/- mice compared to WT mice (normalized to WT: 1±0.05 in WT, 1.66±0.08 in PON2-/-, p<0.001). Phospho-GSK3b level was significantly downregulated in in PON2-/- mice compared to WT mice (pGSK3b/GSK3b normalized to WT: 1±0.06 in WT 0.67±0.08 in PON2-/-, p<0.05). Conclusions: PON2 regulates myocardial ischemia/reperfusion injury via inhibiting the opening of mPTP, which is associated with reduced mitochondria ROS production, deactivation of ER stress signaling CHOP and GSK3b.


Sign in / Sign up

Export Citation Format

Share Document