proteasome inhibition
Recently Published Documents


TOTAL DOCUMENTS

1254
(FIVE YEARS 199)

H-INDEX

86
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shohei Kawakami ◽  
Mitsuyo Tsuma-Kaneko ◽  
Masakazu Sawanobori ◽  
Tomoko Uno ◽  
Yoshihiko Nakamura ◽  
...  

AbstractIn this study, we examined the antileukemic effects of pterostilbene, a natural methylated polyphenol analog of resveratrol that is predominantly found in berries and nuts, using various human and murine leukemic cells, as well as bone marrow samples obtained from patients with leukemia. Pterostilbene administration significantly induced apoptosis of leukemic cells, but not of non-malignant hematopoietic stem/progenitor cells. Interestingly, pterostilbene was highly effective in inducing apoptosis of leukemic cells harboring the BCR/ABL fusion gene, including ABL tyrosine kinase inhibitor (TKI)-resistant cells with the T315I mutation. In BCR/ABL+ leukemic cells, pterostilbene decreased the BCR/ABL fusion protein levels and suppressed AKT and NF-κB activation. We further demonstrated that pterostilbene along with U0126, an inhibitor of the MEK/ERK signaling pathway, synergistically induced apoptosis of BCR/ABL+ cells. Our results further suggest that pterostilbene-promoted downregulation of BCR/ABL involves caspase activation triggered by proteasome inhibition-induced endoplasmic reticulum stress. Moreover, oral administration of pterostilbene significantly suppressed tumor growth in mice transplanted with BCR/ABL+ leukemic cells. Taken together, these results suggest that pterostilbene may hold potential for the treatment of BCR/ABL+ leukemia, in particular for those showing ABL-dependent TKI resistance.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3587
Author(s):  
Satyendra Chandra Tripathi ◽  
Disha Vedpathak ◽  
Edwin Justin Ostrin

Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Eduard Bentea ◽  
Laura De Pauw ◽  
Lise Verbruggen ◽  
Lila C. Winfrey ◽  
Lauren Deneyer ◽  
...  

The astrocytic cystine/glutamate antiporter system xc– (with xCT as the specific subunit) imports cystine in exchange for glutamate and has been shown to interact with multiple pathways in the brain that are dysregulated in age-related neurological disorders, including glutamate homeostasis, redox balance, and neuroinflammation. In the current study, we investigated the effect of genetic xCT deletion on lactacystin (LAC)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of the nigrostriatal pathway, as models for Parkinson’s disease (PD). Dopaminergic neurons of adult xCT knock-out mice (xCT–/–) demonstrated an equal susceptibility to intranigral injection of the proteasome inhibitor LAC, as their wild-type (xCT+/+) littermates. Contrary to adult mice, aged xCT–/– mice showed a significant decrease in LAC-induced degeneration of nigral dopaminergic neurons, depletion of striatal dopamine (DA) and neuroinflammatory reaction, compared to age-matched xCT+/+ littermates. Given this age-related protection, we further investigated the sensitivity of aged xCT–/– mice to chronic and progressive MPTP treatment. However, in accordance with our previous observations in adult mice (Bentea et al., 2015a), xCT deletion did not confer protection against MPTP-induced nigrostriatal degeneration in aged mice. We observed an increased loss of nigral dopaminergic neurons, but equal striatal DA denervation, in MPTP-treated aged xCT–/– mice when compared to age-matched xCT+/+ littermates. To conclude, we reveal age-related protection against proteasome inhibition-induced nigrostriatal degeneration in xCT–/– mice, while xCT deletion failed to protect nigral dopaminergic neurons of aged mice against MPTP-induced toxicity. Our findings thereby provide new insights into the role of system xc– in mechanisms of dopaminergic cell loss and its interaction with aging.


Endocrinology ◽  
2021 ◽  
Author(s):  
Rayhan A Lal ◽  
Hannah P Moeller ◽  
Ella A Thomson ◽  
Timothy M Horton ◽  
Sooyeon Lee ◽  
...  

Abstract Pathogenic INS gene mutations are causative for Mutant INS-gene-induced Diabetes of Youth (MIDY). We characterize a novel de novo heterozygous INS gene mutation (c.289A>C, p.T97P) that presented in an autoantibody-negative 5-month-old male infant with severe diabetic ketoacidosis. In silico pathogenicity prediction tools provided contradictory interpretations, while structural modeling indicated a deleterious effect on proinsulin folding. Transfection of wildtype and INS p.T97P expression and luciferase reporter constructs demonstrated elevated intracellular mutant proinsulin levels and dramatically impaired proinsulin/insulin and luciferase secretion. Notably, proteasome inhibition partially and selectively rescued INS p.T97P-derived luciferase secretion. Additionally, expression of INS p.T97P caused increased intracellular proinsulin aggregate formation and XBP-1s protein levels, consistent with induction of endoplasmic reticulum stress. We conclude that INS p.T97P is a newly identified pathogenic A-chain variant that is causative for MIDY via disruption of proinsulin folding and processing with induction of the endoplasmic reticulum stress response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maxime Uriarte ◽  
Nadine Sen Nkwe ◽  
Roch Tremblay ◽  
Oumaima Ahmed ◽  
Clémence Messmer ◽  
...  

AbstractEukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.


2021 ◽  
Vol 22 (23) ◽  
pp. 12686
Author(s):  
Tsuyoshi Waku ◽  
Akira Kobayashi

NRF3 (NFE2L3) belongs to the CNC-basic leucine zipper transcription factor family. An NRF3 homolog, NRF1 (NFE2L1), induces the expression of proteasome-related genes in response to proteasome inhibition. Another homolog, NRF2 (NFE2L2), induces the expression of genes related to antioxidant responses and encodes metabolic enzymes in response to oxidative stress. Dysfunction of each homolog causes several diseases, such as neurodegenerative diseases and cancer development. However, NRF3 target genes and their biological roles remain unknown. This review summarizes our recent reports that showed NRF3-regulated transcriptional axes for protein and lipid homeostasis. NRF3 induces the gene expression of POMP for 20S proteasome assembly and CPEB3 for NRF1 translational repression, inhibiting tumor suppression responses, including cell-cycle arrest and apoptosis, with resistance to a proteasome inhibitor anticancer agent bortezomib. NRF3 also promotes mevalonate biosynthesis by inducing SREBP2 and HMGCR gene expression, and reduces the intracellular levels of neural fatty acids by inducing GGPS1 gene expression. In parallel, NRF3 induces macropinocytosis for cholesterol uptake by inducing RAB5 gene expression. Finally, this review mentions not only the pathophysiological aspects of these NRF3-regulated axes for cancer cell growth and anti-obesity potential but also their possible role in obesity-induced cancer development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zijing Zhou ◽  
Jinyuan Vero Li ◽  
Boris Martinac ◽  
Charles D. Cox

Missense mutations in the gene that encodes for the mechanically-gated ion channel Piezo1 have been linked to a number of diseases. Gain-of-function variants are linked to a hereditary anaemia and loss-of-function variants have been linked to generalized lymphatic dysplasia and bicuspid aortic valve. Two previously characterized mutations, S217L and G2029R, both exhibit reduced plasma membrane trafficking. Here we show that both mutations also display reduced stability and higher turnover rates than wild-type Piezo1 channels. This occurs through increased ubiquitination and subsequent proteasomal degradation. Congruent with this, proteasome inhibition using N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) reduced the degradation of both mutant proteins. While ALLN treatment could not rescue the function of S217L we show via multiple complementary methodologies that proteasome inhibition via ALLN treatment can not only prevent G2029R turnover but increase the membrane localized pool of this variant and the functional Piezo1 mechanosensitive currents. This data in combination with a precision medicine approach provides a new potential therapeutic avenue for the treatment of Piezo1 mediated channelopathies.


2021 ◽  
Author(s):  
Magdalena Oron ◽  
Marcin Grochowski ◽  
Akanksha Jaiswar ◽  
Magdalena Nowak-Niezgoda ◽  
Malgorzata Kolos ◽  
...  

Human neoplasias are often addicted to the cellular proteasome machinery. This has led to the development of bortezomib and carfilzomib proteasome inhibitors, approved for the treatment of multiple myeloma. Cancers, however, were found resistant to the proteasome inhibition in clinical trials, suggesting effective, cancer-specific compensatory responses. Here we employed global proteomics to determine contributions of compensatory mechanisms upon the proteasome inhibition with carfilzomib - in the cells of multiple myeloma, normal fibroblasts, and cancers of lung, colon, and pancreas. A pathway-oriented siRNA screen based on proteomics results showed that molecular chaperones, autophagy- and endocytosis-related proteins are cancer-specific vulnerabilities in combination with carfilzomib. HSP70 family chaperones HSPA1A/B were the most universal proteasome inhibition responders in the proteomes of all the studied cell types and HSPA1A/B inhibition most specifically sensitized cancer cells to carfilzomib in cell lines, patient-derived organoids and mouse xenografts. Overlap of proteomics with RNA-seq data showed that the proteasome inhibition-dependent HSPA1A/B induction in cancer cells is mainly transcription-driven and HSF1/2-dependent. Consequently, we found that a high level of HSPA1A/B mRNA is associated with a low proteasome activity in cancer patient tissues and is a risk factor in cancer patients with the low level of expression of the proteasome. Functionally, the HSPA1A/B induction does not affect a proteasome expression bounce-back upon the carfilzomib treatment, while it supports other mechanisms of the proteasome inhibition response - autophagy, unfolded protein response, and directly the 26S proteasome activity. We found that the 26S proteasome is chaperoned and protected from the inhibition with carfilzomib by HSPA1A/B assisted by DNAJB1 co-chaperone in cancer cells and using purified protein system in vitro. Thus, we define HSPA1A/B as a central player in the cellular compensatory response to the decreased proteasome activity, and the sensitive target in cancer cells with the inhibited proteasome.


2021 ◽  
Author(s):  
Shaohui Wang ◽  
Yao Jiang ◽  
Yabo Liu ◽  
Qianhui Liu ◽  
Hongwei Sun ◽  
...  

Abstract Ferroptosis is a form of regulated cell death resulting from iron accumulation and lipid peroxidation. In some particular brain regions, iron dyshomeostasis and peroxidation damage of neurons are closely related to a wide range of neurodegenerative diseases known as “tauopathies”, in which intracellular aggregation of microtubule-associated protein tau is the common neuropathological feature. However, the relationship between ferroptosis and tau aggregation is not well understood. The current study demonstrates that erastin-induced ferroptosis can promote tau hyperphosphorylation and aggregation in mouse neuroblastoma cells (N2a cells). Moreover, ferroptosis inhibitor ferrostatin-1 can alleviate tau aggregation effectively. In-depth mechanism research indicates that activated Glycogen synthase kinase-3β (GSK-3β) is responsible for abnormal hyperphosphorylation and accumulation. More importantly, proteasome inhibition can exacerbate the tau degradation obstacle and accelerate tau aggregation in the process of ferroptosis. Our results indicate that ferroptosis can lead to abnormal aggregation of tau protein and might be a promising therapeutic target of tauopathies.


Sign in / Sign up

Export Citation Format

Share Document