scholarly journals Locating Minimal Fault Interaction in Combinatorial Testing

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Zheng ◽  
Xiaoxue Wu ◽  
Desheng Hu ◽  
Qihai Zhu

Combinatorial testing (CT) technique could significantly reduce testing cost and increase software system quality. By using the test suite generated by CT as input to conduct black-box testing towards a system, we are able to detect interactions that trigger the system’s faults. Given a test case, there may be only part of all its parameters relevant to the defects in system and the interaction constructed by those partial parameters is key factor of triggering fault. If we can locate those parameters accurately, this will facilitate the software diagnosing and testing process. This paper proposes a novel algorithm named complete Fault Interaction Location (comFIL) to locate those interactions that cause system’s failures and meanwhile obtains the minimal set of target interactions in test suite produced by CT. By applying this method, testers can analyze and locate the factors relevant to defects of system more precisely, thus making the process of software testing and debugging easier and more efficient. The results of our empirical study indicate that comFIL performs better compared with known fault location techniques in combinatorial testing because of its improved effectiveness and precision.

2018 ◽  
Vol 7 (3.8) ◽  
pp. 22 ◽  
Author(s):  
Dr V. Chandra Prakash ◽  
Subhash Tatale ◽  
Vrushali Kondhalkar ◽  
Laxmi Bewoor

In software development life cycle, testing plays the significant role to verify requirement specification, analysis, design, coding and to estimate the reliability of software system. A test manager can write a set of test cases manually for the smaller software systems. However, for the extensive software system, normally the size of test suite is large, and the test suite is prone to an error committed like omissions of important test cases, duplication of some test cases and contradicting test cases etc. When test cases are generated automatically by a tool in an intelligent way, test errors can be eliminated. In addition, it is even possible to reduce the size of test suite and thereby to decrease the cost & time of software testing.It is a challenging job to reduce test suite size. When there are interacting inputs of Software under Test (SUT), combinatorial testing is highly essential to ensure higher reliability from 72 % to 91 % or even more than that. A meta-heuristic algorithm like Particle Swarm Optimization (PSO) solves optimization problem of automated combinatorial test case generation. Many authors have contributed in the field of combinatorial test case generation using PSO algorithms.We have reviewed some important research papers on automated test case generation for combinatorial testing using PSO. This paper provides a critical review of use of PSO and its variants for solving the classical optimization problem of automatic test case generation for conducting combinatorial testing.   


Author(s):  
ZIYUAN WANG ◽  
LIN CHEN ◽  
BAOWEN XU ◽  
YAN HUANG

Combinatorial testing has been widely used in practice. People usually assume all test cases in combinatorial test suite will run completely. However, in many scenarios where combinatorial testing is needed, for example the regression testing, the entire combinatorial test suite is not run completely as a result of test resource constraints. To improve the efficiency of testing, combinatorial test case prioritization technique is required. For the scenario of regression testing, this paper proposes a new cost-cognizant combinatorial test case prioritization technique, which takes both combination weights and test costs into account. Here we propose a series of metrics with physical meaning, which assess the combinatorial coverage efficiency of test suite, to guide the prioritization of combinatorial test cases. And two heuristic test case prioritization algorithms, which are based on total and additional techniques respectively, are utilized in our technique. Simulation experimental results illustrate some properties and advantages of proposed technique.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Software Product Lines(SPLs) covers a mixture of features for testing Software Application Program(SPA). Testing cost reduction is a major metric of software testing. In combinatorial testing(CT), maximization of fault type coverage and test suite reduction plays a key role to reduce the testing cost of SPA. Metaheuristic Genetic Algorithm(GA) do not offer best outcome for test suite optimization problem due to mutation operation and required more computational time. So, Fault-Type Coverage Based Ant Colony Optimization(FTCBACO) algorithm is offered for test suite reduction in CT. FTCBACO algorithm starts with test cases in test suite and assign separate ant to each test case. Ants elect best test cases by updating of pheromone trails and selection of higher probability trails. Best test case path of ant with least time are taken as optimal solution for performing CT. Hence, FTCBACO Technique enriches reduction rate of test suite and minimizes computational time of reducing test cases efficiently for CT.


Author(s):  
RUBING HUANG ◽  
XIAODONG XIE ◽  
DAVE TOWEY ◽  
TSONG YUEH CHEN ◽  
YANSHENG LU ◽  
...  

Combinatorial interaction testing is a well-recognized testing method, and has been widely applied in practice, often with the assumption that all test cases in a combinatorial test suite have the same fault detection capability. However, when testing resources are limited, an alternative assumption may be that some test cases are more likely to reveal failure, thus making the order of executing the test cases critical. To improve testing cost-effectiveness, prioritization of combinatorial test cases is employed. The most popular approach is based on interaction coverage, which prioritizes combinatorial test cases by repeatedly choosing an unexecuted test case that covers the largest number of uncovered parameter value combinations of a given strength (level of interaction among parameters). However, this approach suffers from some drawbacks. Based on previous observations that the majority of faults in practical systems can usually be triggered with parameter interactions of small strengths, we propose a new strategy of prioritizing combinatorial test cases by incrementally adjusting the strength values. Experimental results show that our method performs better than the random prioritization technique and the technique of prioritizing combinatorial test suites according to test case generation order, and has better performance than the interaction-coverage-based test prioritization technique in most cases.


Author(s):  
Sudhir Kumar Mohapatra ◽  
Srinivas Prasad

Software testing is one in all the vital stages of system development. In software development, developers continually depend upon testing to reveal bugs. Within the maintenance stage test suite size grow due to integration of new functionalities. Addition of latest technique force to make new test case which increase the cost of test suite. In regression testing new test case could also be added to the test suite throughout the entire testing process. These additions of test cases produce risk of presence of redundant test cases. Because of limitation of time and resource, reduction techniques should be accustomed determine and take away. Analysis shows that a set of the test case in a suit should satisfy all the test objectives that is named as representative set. Redundant test case increase the execution price of the test suite, in spite of NP-completeness of the problem there are few sensible reduction techniques are available. During this paper the previous GA primarily based technique proposed is improved to search out cost optimum representative set using ant colony optimization.


Author(s):  
Michaela Greiler ◽  
Arie van Deursen ◽  
Andy Zaidman
Keyword(s):  

Regression testing is one of the most critical testing activities among software product verification activities. Nevertheless, resources and time constraints could inhibit the execution of a full regression test suite, hence leaving us in confusion on what test cases to run to preserve the high quality of software products. Different techniques can be applied to prioritize test cases in resource-constrained environments, such as manual selection, automated selection, or hybrid approaches. Different Multi-Objective Evolutionary Algorithms (MOEAs) have been used in this domain to find an optimal solution to minimize the cost of executing a regression test suite while obtaining maximum fault detection coverage as if the entire test suite was executed. MOEAs achieve this by selecting set of test cases and determining the order of their execution. In this paper, three Multi Objective Evolutionary Algorithms, namely, NSGA-II, IBEA and MoCell are used to solve test case prioritization problems using the fault detection rate and branch coverage of each test case. The paper intends to find out what’s the most effective algorithm to be used in test cases prioritization problems, and which algorithm is the most efficient one, and finally we examined if changing the fitness function would impose a change in results. Our experiment revealed that NSGA-II is the most effective and efficient MOEA; moreover, we found that changing the fitness function caused a significant reduction in evolution time, although it did not affect the coverage metric.


2013 ◽  
Vol 10 (1) ◽  
pp. 73-102 ◽  
Author(s):  
Lijun Mei ◽  
Yan Cai ◽  
Changjiang Jia ◽  
Bo Jiang ◽  
W.K. Chan

Many web services not only communicate through XML-based messages, but also may dynamically modify their behaviors by applying different interpretations on XML messages through updating the associated XML Schemas or XML-based interface specifications. Such artifacts are usually complex, allowing XML-based messages conforming to these specifications structurally complex. Testing should cost-effectively cover all scenarios. Test case prioritization is a dimension of regression testing that assures a program from unintended modifications by reordering the test cases within a test suite. However, many existing test case prioritization techniques for regression testing treat test cases of different complexity generically. In this paper, the authors exploit the insights on the structural similarity of XML-based artifacts between test cases in both static and dynamic dimensions, and propose a family of test case prioritization techniques that selects pairs of test case without replacement in turn. To the best of their knowledge, it is the first test case prioritization proposal that selects test case pairs for prioritization. The authors validate their techniques by a suite of benchmarks. The empirical results show that when incorporating all dimensions, some members of our technique family can be more effective than conventional coverage-based techniques.


Sign in / Sign up

Export Citation Format

Share Document