scholarly journals Nod2-Nodosome in a Cell-Free System: Implications in Pathogenesis and Drug Discovery for Blau Syndrome and Early-Onset Sarcoidosis

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Tomoyuki Iwasaki ◽  
Naoe Kaneko ◽  
Yuki Ito ◽  
Hiroyuki Takeda ◽  
Tatsuya Sawasaki ◽  
...  

Nucleotide-binding oligomerization domain-containing protein (Nod) 2 is an intracellular pattern recognition receptor, which recognizes muramyl dipeptide (N-Acetylmuramyl-L-Alanyl-D-Isoglutamine: MDP), a bacterial peptidoglycan component, and makes a NF-κB-activating complex called nodosome with adaptor protein RICK (RIP2/RIPK2). Nod2 mutants are associated with the autoinflammatory diseases, Blau syndrome (BS)/early-onset sarcoidosis (EOS). For drug discovery of BS/EOS, we tried to develop Nod2-nodosome in a cell-free system. FLAG-tagged RICK, biotinylated-Nod2, and BS/EOS-associated Nod2 mutants were synthesized, and proximity signals between FLAG-tagged and biotinylated proteins were detected by amplified luminescent proximity homogeneous assay (ALPHA). Upon incubation with MDP, the ALPHA signal of interaction between Nod2-WT and RICK was increased in a dose-dependent manner. The ALPHA signal of interaction between RICK and the BS/EOS-associated Nod2 mutants was more significantly increased than Nod2-WT. Notably, the ALPHA signal between Nod2-WT and RICK was increased upon incubation with MDP, but not when incubated with the same concentrations, L-alanine, D-isoglutamic acid, or the MDP-D-isoform. Thus, we successfully developed Nod2-nodosome in a cell-free system reflecting its function in vivo, and it can be useful for screening Nod2-nodosome-targeted therapeutic molecules for BS/EOS and granulomatous inflammatory diseases.

2008 ◽  
Vol 82 (12) ◽  
pp. 5967-5980 ◽  
Author(s):  
Judit Pogany ◽  
Peter D. Nagy

ABSTRACT To study the replication of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we have developed a cell-free system based on a Saccharomyces cerevisiae extract. The cell-free system was capable of performing a complete replication cycle on added plus-stranded TBSV replicon RNA (repRNA) that led to the production of ∼30-fold-more plus-stranded progeny RNAs than the minus-stranded replication intermediate. The cell-free system also replicated the full-length TBSV genomic RNA, which resulted in production of subgenomic RNAs as well. The cell-free system showed high template specificity, since a mutated repRNA, minus-stranded repRNA, or a heterologous viral RNA could not be used as templates by the tombusvirus replicase. Similar to the in vivo situation, replication of the TBSV replicon RNA took place in a membraneous fraction, in which the viral replicase-RNA complex was RNase and protease resistant but sensitive to detergents. In addition to faithfully replicating the TBSV replicon RNA, the cell-free system was also capable of generating TBSV RNA recombinants with high efficiency. Altogether, tombusvirus replicase in the cell-free system showed features remarkably similar to those of the in vivo replicase, including carrying out a complete cycle of replication, high template specificity, and the ability to recombine efficiently.


1981 ◽  
Vol 1 (7) ◽  
pp. 635-651
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1995 ◽  
Vol 310 (2) ◽  
pp. 461-467 ◽  
Author(s):  
C A Feghali ◽  
T M Wright

gamma RF-1 is a recently identified transcription factor induced by interferon-gamma (IFN-gamma) which binds to a unique palindromic enhancer, gamma RE-1, in the promoter of the mig gene. This paper describes the ligand-dependent and ligand-independent activation of gamma RF-1 in a cell-free system. gamma RF-1 activity was induced by IFN-gamma in a time-dependent manner from 5 to 60 min in lysates prepared from the human monocytic leukaemia line THP-1 and the human epidermoid carcinoma line A431. The activation of gamma RF-1 in vitro required both ATP and an inhibitor of tyrosine phosphatases (sodium orthovanadate or pervanadate). In the presence of limiting concentrations (micromolar) of ATP, activation was also dependent upon stimulation with IFN-gamma, whereas at millimolar concentrations of ATP, gamma RF-1 was activated by either sodium orthovanadate or pervanadate in the absence of ligand. Based on cell fractionation studies, both membrane and cytosol components were essential for activation of gamma RF-1 in vitro. Consistent with a role for one or more tyrosine kinases in the activation of gamma RF-1, its DNA binding activity was blocked by monoclonal anti-phosphotyrosine antibodies and by the tyrosine kinase inhibitors genistein, lavendustin A and herbimycin A. A comparison with recently described pathways of IFN-mediated transcription factor regulation indicates that the in vitro activation of gamma RF-1 is unique, requiring both membrane and cytosol fractions and inhibition of endogenous tyrosine phosphatase activity.


2000 ◽  
Vol 347 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Vijayalakshmi NAGARAJ ◽  
David NORRIS

One of the central reactions of homologous recombination is the invasion of a single strand of DNA into a homologous duplex to form a joint molecule. Here we describe the isolation of a cell-free system from meiotic yeast cells that catalyses joint-molecule formation in vitro. The active components in the system required ATP and homologous DNA and operated in both 0.5 and 13 mM MgCl2. When the cell-free system was prepared from rad51/rad51 and rad52/rad52 mutants and joint-molecule formation was assayed at 0.5 mM MgCl2, the specific activity decreased to 6% and 13.8% respectively of the wild-type level. However, when the same mutant extracts were premixed, joint-molecule formation increased 4-8-fold, i.e. the mutant extracts exhibited complementation in vitro. These results demonstrated that Rad51p and Rad52p were required for optimal joint-molecule formation at 0.5 mM MgCl2. Intriguingly, however, Rad51p and Rad52p seemed to be more dispensable at higher concentrations of MgCl2 (13 mM). Further purification of the responsible activity has proven problematical, but it did flow through a sizing column as a single peak (molecular mass 1.2 MDa) that was co-eluted with Rad51p and RFA, the eukaryotic single-stranded DNA-binding protein. All of these characteristics are consistent with the known properties of the reaction in vivo and suggest that the new cell-free system will be suitable for purifying enzymes involved in homologous recombination.


Author(s):  
W. Doerfler ◽  
A. Spies ◽  
R. Jessberger ◽  
U. Lichtenberg ◽  
C. Zock ◽  
...  

FEBS Letters ◽  
1978 ◽  
Vol 89 (2) ◽  
pp. 337-340 ◽  
Author(s):  
Kolari S. Bhat ◽  
G. Padmanaban

1981 ◽  
Vol 1 (7) ◽  
pp. 635-651 ◽  
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1995 ◽  
Vol 311 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P G Heyworth ◽  
R W Erickson ◽  
J Ding ◽  
J T Curnutte ◽  
J A Badwey

Selective antagonists of myosin light chain kinase (MLCK) [e.g. ML-7; 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine hydrochloride] were found to inhibit superoxide (O2-) release from stimulated neutrophils. The concentrations of ML-7 that were inhibitory were substantially lower than those reported for a selective antagonist of protein kinase C [i.e. H-7; 1-(5-isoquinolinesulphonyl)-2-methylpiperazine dihydrochloride]. ML-7 also reduced the phosphorylation of the 47 kDa subunit of the NADPH-oxidase system (p47-phox) and blocked translocation of this protein to the Triton X-100-insoluble fraction in stimulated cells. Interestingly, ML-7 also inhibited O2- production in a cell-free system derived from neutrophils at concentrations similar to those that were effective in vivo. This cell-free system does not require ATP and is insensitive to all other inhibitors of protein kinases tested, including some highly effective against MLCK (i.e. staurosporine). Thus, the data suggest that ML-7 does not block O2- release by inhibiting a protein kinase but instead may interact directly with a subunit of the oxidase. The binding site for ML-7 may provide a valuable target for inhibiting the inflammatory properties of phagocytic leucocytes by naphthalenesulphonamides designed to lack activity against protein kinases.


Sign in / Sign up

Export Citation Format

Share Document