scholarly journals Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed Elfeky ◽  
Ryuji Kaede ◽  
Yuko Okamatsu-Ogura ◽  
Kazuhiro Kimura

High mobility group protein B1 (HMGB1) is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide- (LPS-) induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin- (IL-) 10 similarly suppressed LPS-induced HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4) mRNA expression and increased heme oxygenase- (HO-) 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 and HO-1 mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK) inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway.

2018 ◽  
Vol 55 ◽  
pp. 165-173 ◽  
Author(s):  
Phi-Long Tran ◽  
Phuong Thao Tran ◽  
Huynh Nguyen Khanh Tran ◽  
Suhyun Lee ◽  
Okwha Kim ◽  
...  

2006 ◽  
Vol 106 (3) ◽  
pp. 364-371 ◽  
Author(s):  
Byung-Chul Kim ◽  
Joung-Woo Choi ◽  
Hye-Young Hong ◽  
Sin-Ae Lee ◽  
Suntaek Hong ◽  
...  

2004 ◽  
Vol 142 (7) ◽  
pp. 1191-1199 ◽  
Author(s):  
María José Alcaraz ◽  
Ana María Vicente ◽  
Amparo Araico ◽  
José N Dominguez ◽  
María Carmen Terencio ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jinming Peng ◽  
Tianyong Hu ◽  
Jin Li ◽  
Jing Du ◽  
Kerui Zhu ◽  
...  

Shepherd’s purse (Capsella bursa-pastoris (L.) Medik.), a wild herb as a traditional herbal medicine, has been proved with multiple healthy benefits. In this study, the chemical constituents of shepherd’s purse were identified by UPLC-QTOF-MS/MS. The antioxidative and anti-inflammatory potential of shepherd’s purse extract (SPE) were also investigated applying lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 macrophages and a carrageenan-induced mice paw edema model. Twenty-four chemical compounds were identified mainly including phenolic acids and flavonoids. The data also indicated SPE inhibited the productions of NO, PGE2, TNF-α, and IL-6 stimulated with LPS. In addition, SPE inhibited the increase of reactive oxygen species (ROS) and upregulated the expression of heme oxygenase-1 (HO-1). We further found that SPE inhibited the phosphorylation of P38 MAPK and activation of NF-κB. In vivo mice model also indicated that SPE showed strong antioxidative and anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document