scholarly journals Delay, Reliability, and Throughput Based QoS Profile: A MAC Layer Performance Optimization Mechanism for Biomedical Applications in Wireless Body Area Sensor Networks

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Sajjad Akbar ◽  
Hongnian Yu ◽  
Shuang Cang

Recently, increasing demand for remote healthcare monitoring systems poses a specific set of Quality of Services (QoS) requirements to the MAC layer protocols and standards (IEEE 802.15.6, IEEE 802.15.4, etc.) of Wireless Body Area Sensor Networks (WBASNs). They mainly include time bounded services (latency), reliable data transmission, fair channel distribution, and specified data rates. The existing MAC protocols of WBASNs are lack of a specific set of QoS. To address this, the paper proposes a QoS profile named delay, reliability, and throughput (DRT). The QoS values computed through DRT profile provide maximum reliability of data transmission within an acceptable latency and data rates. The DRT is based on the carrier sense multiple access with collision avoidance (CSMA/CA) channel access mechanism and considers IEEE 802.15.4 (low-rate WPAN) and IEEE 802.15.6 (WBASN). Further, a detailed performance analysis of different frequency bands is done which are standardized for WBASNs, that is, 420 MHz, 868 MHz, 2.4 GHz, and so forth. Finally, a series of experiments are conducted to produce statistical results for DRT profile with respect to delay, reliability, and packet delivery ratio (PDR). The calculated results are verified through extensive simulations in the CASTALIA 3.2 framework using the OMNET++ network simulator.

2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Fasee Ullah ◽  
Abdul Hanan Abdullah ◽  
Muhammad Zubair ◽  
Waqar Rauf ◽  
Junaid Junaid ◽  
...  

With recent advancement, Wireless Body Area Network (WBAN) plays an important role to detect various diseases of a patient in advance and informs the medical team about the life threatening situation. WBAN comprises of small intelligent Biomedical sensors which are implanted inside patient body and attached on the surface of a patient to monitor different vital signs, namely; respiratory rate, ECG, EMG, temperature, blood pressure, glucose. The routing layer of WBAN has the same challenging problems as similarly faced in WSN but the unique challenge is the temperature-rise during monitoring of vital signs and data transmission. IEEE 802.15.6 MAC Superframe of WBAN is different from IEEE 802.15.4 MAC of WSN and provides channels to emergency and non-emergency data for transmission. As similarly seen in WSN, PHY layer of IEEE 802.15.4 and IEEE 802.15.6 provide various modulation techniques for data transmission. The purpose of this study is to familiar with routing layer, MAC layer and PHY layer in the cross-layer design of WBAN.


2018 ◽  
Vol 11 (1) ◽  
pp. 78 ◽  
Author(s):  
Yasmin M. Amin ◽  
Amr T. Abdel-Hamid

The IEEE 802.15.4 standard defines the PHY and MAC layer specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). With the proliferation of many time-critical applications with real-time delivery, low latency, and/or specific bandwidth requirements, Guaranteed Time Slots (GTS) are increasingly being used for reliable contention-free data transmission by nodes within beacon-enabled WPANs. To evaluate the performance of the 802.15.4 GTS management scheme, this paper introduces a new GTS simulation model for OMNeT++ / MiXiM. Our GTS model considers star-topology WPANs within the 2.4 GHz frequency band, and is in full conformance with the IEEE 802.15.4 – 2006 standard. To enable thorough investigation of the behaviors and impacts of different attacks against the 802.15.4 GTS mechanism, a new GTS attacks simulation model for OMNeT++ is also introduced in this paper. Our GTS attacks model is developed for OMNeT++ / NETA, and is integrated with our GTS model to provide a single inclusive OMNeT++ simulation model for both the GTS mechanism and all known-to-date attacks against it.


Sign in / Sign up

Export Citation Format

Share Document