scholarly journals Otx2-PNN Interaction to Regulate Cortical Plasticity

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Clémence Bernard ◽  
Alain Prochiantz

The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood.

2018 ◽  
Author(s):  
Giulia Faini ◽  
Andrea Aguirre ◽  
Silvia Landi ◽  
Tommaso Pizzorusso ◽  
Gian Michele Ratto ◽  
...  

SummaryIn the neocortex, the closure of critical periods (CPs) of plasticity is paralleled by the accumulation of perineuronal nets (PNNs) around parvalbumin (PV)-positive inhibitory interneurons. Accordingly, PNN degradation in adult mammals re-opens cortical plasticity. However, how PNNs tune cortical function and plasticity is unknown. We found that PNNs modulated the gain of visual responses in the adult mouse visual cortex in vivo. Removal of PNNs in adult V1 strongly increased thalamic neurotransmission selectively on layer 4 PV cells. This produced a differential gating of feed-forward inhibition on principal neurons and other PV cells, with no alterations of unitary inhibitory synaptic transmission and neuronal excitability. These effects depended on visual input, as they were strongly attenuated by monocular deprivation in PNN-depleted adult mice. Thus, PNNs control visual processing and plasticity by selectively setting the strength of thalamic recruitment of PV cells. We conclude that PNN accumulation during circuit maturation likely prevents excessive thalamic excitation of PV cells at the expense of cortical plasticity.


2018 ◽  
Author(s):  
Adema Ribic ◽  
Michael C. Crair ◽  
Thomas Biederer

HighlightsThe synaptogenic molecule SynCAM 1 is selectively regulated by visual experienceSynCAM 1 controls thalamic input onto cortical Parvalbumin (PV+) interneuronsPV+-specific knockdown of SynCAM 1 arrests maturation of cortical inhibitionThalamic excitation onto PV+ interneurons is essential for critical period closureeTOC BlurbRibic et al. show that network plasticity in both young and adult cortex is restricted by the synapse organizing molecule SynCAM 1. On a cellular level, it functions in Parvalbumin-positive interneurons to recruit thalamocortical terminals. This controls the maturation of inhibitory drive and restricts plasticity in the cortex. These results reveal the synaptic locus of cortical plasticity and identify the first cell-autonomous synaptic factor for closure of cortical critical periods.SummaryBrain plasticity peaks early in life and tapers in adulthood. This is exemplified in the primary visual cortex, where brief loss of vision to one eye abrogates cortical responses to inputs from that eye during the critical period, but not in adulthood. The synaptic locus of critical period plasticity and the cell-autonomous synaptic factors timing these periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits visual cortex plasticity. SynCAM 1 selectively controls the number of excitatory thalamocortical (TC) inputs onto Parvalbumin (PV+) interneurons and loss of SynCAM 1 in turn impairs the maturation of TC-driven feed-forward inhibition. SynCAM 1 acts in cortical PV+ interneurons to perform these functions and its PV+-specific knockdown prevents the age-related plasticity decline. These results identify a synapse type-specific, cell-autonomous mechanism that governs circuit maturation and closes the visual critical period.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 77-81 ◽  
Author(s):  
Jérôme Ribot ◽  
Rachel Breton ◽  
Charles-Félix Calvo ◽  
Julien Moulard ◽  
Pascal Ezan ◽  
...  

Brain postnatal development is characterized by critical periods of experience-dependent remodeling of neuronal circuits. Failure to end these periods results in neurodevelopmental disorders. The cellular processes defining critical-period timing remain unclear. Here, we show that in the mouse visual cortex, astrocytes control critical-period closure. We uncover the underlying pathway, which involves astrocytic regulation of the extracellular matrix, allowing interneuron maturation. Unconventional astrocyte connexin signaling hinders expression of extracellular matrix–degrading enzyme matrix metalloproteinase 9 (MMP9) through RhoA–guanosine triphosphatase activation. Thus, astrocytes not only influence the activity of single synapses but also are key elements in the experience-dependent wiring of brain circuits.


1984 ◽  
Vol 52 (5) ◽  
pp. 941-960 ◽  
Author(s):  
L. Tong ◽  
R. E. Kalil ◽  
P. D. Spear

Previous experiments have found that neurons in the cat's lateral suprasylvian (LS) visual area of cortex show functional compensation following removal of visual cortical areas 17, 18, and 19 on the day of birth. Correspondingly, an enhanced retino-thalamic pathway to LS cortex develops in these cats. The present experiments investigated the critical periods for these changes. Unilateral lesions of areas 17, 18, and 19 were made in cats ranging in age from 1 day postnatal to 26 wk. When the cats were adult, single-cell recordings were made from LS cortex ipsilateral to the lesion. In addition, transneuronal autoradiographic methods were used to trace the retino-thalamic projections to LS cortex in many of the same animals. Following lesions in 18- and 26-wk-old cats, there is a marked reduction in direction-selective LS cortex cells and an increase in cells that respond best to stationary flashing stimuli. These results are similar to those following visual cortex lesions in adult cats. In contrast, the percentages of cells with these properties are normal following lesions made from 1 day to 12 wk of age. Thus the critical period for development of direction selectivity and greater responses to moving than to stationary flashing stimuli in LS cortex following a visual cortex lesion ends between 12 and 18 wk of age. Following lesions in 26-wk-old cats, there is a decrease in the percentage of cells that respond to the ipsilateral eye, which is similar to results following visual cortex lesions in adult cats. However, ocular dominance is normal following lesions made from 1 day to 18 wk of age. Thus the critical period for development of responses to the ipsilateral eye following a lesion ends between 18 and 26 wk of age. Following visual cortex lesions in 2-, 4-, or 8-wk-old cats, about 30% of the LS cortex cells display orientation selectivity to elongated slits of light. In contrast, few or no cells display this property in normal adult cats, cats with lesions made on the day of birth, or cats with lesions made at 12 wk of age or later. Thus an anomalous property develops for many LS cells, and the critical period for this property begins later (between 1 day and 2 wk) and ends earlier (between 8 and 12 wk) than those for other properties.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 35 ◽  
Author(s):  
TAKAO K. HENSCH ◽  
ELIZABETH M. QUINLAN

AbstractThe shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular ‘brakes’. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.


2005 ◽  
Vol 22 (5) ◽  
pp. 685-691 ◽  
Author(s):  
JIANHUA CANG ◽  
VALERY A. KALATSKY ◽  
SIEGRID LÖWEL ◽  
MICHAEL P. STRYKER

The responses of cells in the visual cortex to stimulation of the two eyes changes dramatically following a period of monocular visual deprivation (MD) during a critical period in early life. This phenomenon, referred to as ocular dominance (OD) plasticity, is a widespread model for understanding cortical plasticity. In this study, we designed stimulus patterns and quantification methods to analyze OD in the mouse visual cortex using optical imaging of intrinsic signals. Using periodically drifting bars restricted to the binocular portion of the visual field, we obtained cortical maps for both contralateral (C) and ipsilateral (I) eyes and computed OD maps as (C − I)/(C + I). We defined the OD index (ODI) for individual animals as the mean of the OD map. The ODI obtained from an imaging session of less than 30 min gives reliable measures of OD for both normal and monocularly deprived mice under Nembutal anesthesia. Surprisingly, urethane anesthesia, which yields excellent topographic maps, did not produce consistent OD findings. Normal Nembutal-anesthetized mice have positive ODI (0.22 ± 0.01), confirming a contralateral bias in the binocular zone. For mice monocularly deprived during the critical period, the ODI of the cortex contralateral to the deprived eye shifted negatively towards the nondeprived, ipsilateral eye (ODI after 2-day MD: 0.12 ± 0.02, 4-day: 0.03 ± 0.03, and 6- to 7-day MD: −0.01 ± 0.04). The ODI shift induced by 4-day MD appeared to be near maximal, consistent with previous findings using single-unit recordings. We have thus established optical imaging of intrinsic signals as a fast and reliable screening method to study OD plasticity in the mouse.


2020 ◽  
Author(s):  
Angelina Lesnikova ◽  
Plinio Cabrera Casarotto ◽  
Senem Merve Fred ◽  
Mikko Voipio ◽  
Frederike Winkel ◽  
...  

AbstractPerineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulphate proteoglycans (CSPGs) which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates BDNF-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase sigma (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex.Significance statementCritical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV+) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV+ neurons. Protein tyrosine phosphatase type S (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV+ interneurons.


2015 ◽  
Vol 112 (24) ◽  
pp. E3131-E3140 ◽  
Author(s):  
Xiaojie Huang ◽  
Sophia K. Stodieck ◽  
Bianka Goetze ◽  
Lei Cui ◽  
Man Ho Wong ◽  
...  

During critical periods, all cortical neural circuits are refined to optimize their functional properties. The prevailing notion is that the balance between excitation and inhibition determines the onset and closure of critical periods. In contrast, we show that maturation of silent glutamatergic synapses onto principal neurons was sufficient to govern the duration of the critical period for ocular dominance plasticity in the visual cortex of mice. Specifically, postsynaptic density protein-95 (PSD-95) was absolutely required for experience-dependent maturation of silent synapses, and its absence before the onset of critical periods resulted in lifelong juvenile ocular dominance plasticity. Loss of PSD-95 in the visual cortex after the closure of the critical period reinstated silent synapses, resulting in reopening of juvenile-like ocular dominance plasticity. Additionally, silent synapse-based ocular dominance plasticity was largely independent of the inhibitory tone, whose developmental maturation was independent of PSD-95. Moreover, glutamatergic synaptic transmission onto parvalbumin-positive interneurons was unaltered in PSD-95 KO mice. These findings reveal not only that PSD-95–dependent silent synapse maturation in visual cortical principal neurons terminates the critical period for ocular dominance plasticity but also indicate that, in general, once silent synapses are consolidated in any neural circuit, initial experience-dependent functional optimization and critical periods end.


1988 ◽  
Vol 1 (2) ◽  
pp. 205-210 ◽  
Author(s):  
C. Shaw ◽  
G. Prusky ◽  
M. Cynader

AbstractRecent studies have shown that several receptor populations in cat visual cortex undergo alterations in their laminar distributions during postnatal development (Shaw et al., 1984a, b; 1986b). These redistributions occur during the first few months of postnatal life, coincident with the physiologically defined critical period for cortical plasticity. In the present communication, we demonstrate that receptor redistributions can be prevented from occurring, or progressing once started, by surgically isolating the visual cortex at appropriate postnatal ages. These data suggest that the maturation of the chemical circuitry of the visual cortex is dependent on factors of extrinsic origin.


Sign in / Sign up

Export Citation Format

Share Document