scholarly journals Chondroitinase and antidepressants promote plasticity by releasing TRKB from dephosphorylating control of PTPσ in parvalbumin neurons

2020 ◽  
Author(s):  
Angelina Lesnikova ◽  
Plinio Cabrera Casarotto ◽  
Senem Merve Fred ◽  
Mikko Voipio ◽  
Frederike Winkel ◽  
...  

AbstractPerineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulphate proteoglycans (CSPGs) which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates BDNF-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase sigma (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex.Significance statementCritical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV+) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV+ neurons. Protein tyrosine phosphatase type S (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV+ interneurons.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Narentuya ◽  
Yoshiko Takeda-Uchimura ◽  
Tahmina Foyez ◽  
Zui Zhang ◽  
Tomoya O. Akama ◽  
...  

2019 ◽  
Vol 295 (4) ◽  
pp. 955-968 ◽  
Author(s):  
Geoffrey J. Eill ◽  
Ashis Sinha ◽  
Markus Morawski ◽  
Mariano S. Viapiano ◽  
Russell T. Matthews

Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1742-P
Author(s):  
STEPHANIE M. STANFORD ◽  
MICHAEL A. DIAZ ◽  
JIWEN J. ZOU ◽  
ROBERT J. ARDECKY ◽  
ANTHONY PINKERTON ◽  
...  

2018 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
R.M. Perez-Gutierrez

Methanol extract from Lippia graveolens (Mexican oregano) was studied in order to identify inhibitory bioactives for protein tyrosine phosphatase 1B (PTP1B). Known flavone as lutein (1), and another flavone glycoside such as lutein-7-o-glucoside (2), 6-hydroxy-lutein-7-ohexoside (3) and lutein-7-o-ramnoide (4) were isolated from methanol extract of aerial parts of the Lippia graveolens. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR, MS and compared with spectroscopic data previously reported. These flavones were evaluated for PTP1B inhibitory activity. Among them, compounds 1 and 3 displayed potential inhibitory activity against PTP1B with IC50 values of 7.01 ± 1.25 μg/ml and 18.4 μg/ml, respectively. In addition, compound 2 and 4 showed moderate inhibitory activity with an IC50 value of 23.8 ± 6.21 and 67.8 ± 5.80 μg/ml respectively. Among the four compounds, luteolin was found to be the most potent PTP1B inhibitor compared to the positive control ursolic acid, with an IC50 value of 8.12 ± 1.06 μg/ml. These results indicate that flavonoids constituents contained in Lippia graveolens can be considered as a natural source for the treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document