scholarly journals Incoherent Dictionary Learning Method Based on Unit Norm Tight Frame and Manifold Optimization for Sparse Representation

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
HongZhong Tang ◽  
Xiaogang Zhang ◽  
Hua Chen ◽  
Ling Zhu ◽  
Xiang Wang ◽  
...  

Optimizing the mutual coherence of a learned dictionary plays an important role in sparse representation and compressed sensing. In this paper, a efficient framework is developed to learn an incoherent dictionary for sparse representation. In particular, the coherence of a previous dictionary (or Gram matrix) is reduced sequentially by finding a new dictionary (or Gram matrix), which is closest to the reference unit norm tight frame of the previous dictionary (or Gram matrix). The optimization problem can be solved by restricting the tightness and coherence alternately at each iteration of the algorithm. The significant and different aspect of our proposed framework is that the learned dictionary can approximate an equiangular tight frame. Furthermore, manifold optimization is used to avoid the degeneracy of sparse representation while only reducing the coherence of the learned dictionary. This can be performed after the dictionary update process rather than during the dictionary update process. Experiments on synthetic and real audio data show that our proposed methods give notable improvements in lower coherence, have faster running times, and are extremely robust compared to several existing methods.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Ziran Wei ◽  
Jianlin Zhang ◽  
Zhiyong Xu ◽  
Yong Liu ◽  
Krzysztof Okarma

For signals reconstruction based on compressive sensing, to reconstruct signals of higher accuracy with lower compression rates, it is required that there is a smaller mutual coherence between the measurement matrix and the sparsifying matrix. Mutual coherence between the measurement matrix and sparsifying matrix can be expressed indirectly by the property of the Gram matrix. On the basis of the Gram matrix, a new optimization algorithm of acquiring a measurement matrix has been proposed in this paper. Firstly, a new mathematical model is designed and a new method of initializing measurement matrix is adopted to optimize the measurement matrix. Then, the loss function of the new algorithm model is solved by the gradient projection-based method of Gram matrix approximating an identity matrix. Finally, the optimized measurement matrix is generated by minimizing mutual coherence between measurement matrix and sparsifying matrix. Compared with the conventional measurement matrices and the traditional optimization methods, the proposed new algorithm effectively improves the performance of optimized measurement matrices in reconstructing one-dimensional sparse signals and two-dimensional image signals that are not sparse. The superior performance of the proposed method in this paper has been fully tested and verified by a large number of experiments.


2016 ◽  
Vol 125 ◽  
pp. 36-47 ◽  
Author(s):  
Thanh Ha Do ◽  
Salvatore Tabbone ◽  
Oriol Ramos Terrades

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Nian Cai ◽  
Shengru Wang ◽  
Shasha Zhu ◽  
Dong Liang

Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method.


Tecnura ◽  
2020 ◽  
Vol 24 (66) ◽  
pp. 62-75
Author(s):  
Edwin Vargas ◽  
Kevin Arias ◽  
Fernando Rojas ◽  
Henry Arguello

Objective: Hyperspectral (HS) imaging systems are commonly used in a diverse range of applications that involve detection and classification tasks. However, the low spatial resolution of hyperspectral images may limit the performance of the involved tasks in such applications. In the last years, fusing the information of an HS image with high spatial resolution multispectral (MS) or panchromatic (PAN) images has been widely studied to enhance the spatial resolution. Image fusion has been formulated as an inverse problem whose solution is an HS image which assumed to be sparse in an analytic or learned dictionary. This work proposes a non-local centralized sparse representation model on a set of learned dictionaries in order to regularize the conventional fusion problem.Methodology: The dictionaries are learned from the estimated abundance data taking advantage of the depth correlation between abundance maps and the non-local self- similarity over the spatial domain. Then, conditionally on these dictionaries, the fusion problem is solved by an alternating iterative numerical algorithm.Results: Experimental results with real data show that the proposed method outperforms the state-of-the-art methods under different quantitative assessments.Conclusions: In this work, we propose a hyperspectral and multispectral image fusion method based on a non-local centralized sparse representation on abundance maps. This model allows us to include the non-local redundancy of abundance maps in the fusion problem using spectral unmixing and improve the performance of the sparsity-based fusion approaches.


Sign in / Sign up

Export Citation Format

Share Document